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Abstract

Optimizing prompts for large language mod-
els has emerged as a crucial technique for en-
hancing the output quality. Recent approaches
exploit Monte Carlo tree search and error feed-
back to automate prompt engineering. How-
ever, error-feedback methods often lack mecha-
nisms to incorporate diverse perspectives, mak-
ing them prone to overfitting and limiting their
generalization across various contexts. To cope
with this problem, we propose a novel prompt
optimization method that mitigates overfitting
by dynamically restructuring model feedback
through semantic centrality. Specifically, our
method generates alternative responses for
overly specific contexts for broader exploration
and extracts condensed higher-level abstrac-
tions. Optimized prompts allow us to main-
tain conceptual robustness without excessive
reliance on spurious correlations. Experimental
results on nine diverse tasks demonstrate that
our method outperforms existing prompt opti-
mization techniques, achieving state-of-the-art
generalization performance.

1 Introduction

Large language models (LLMs) have demonstrated
versatility in various natural language processing
(NLP) tasks (Sahoo et al., 2024; Brown et al., 2020;
Bubeck et al., 2023), yet their performance remains
highly sensitive to input prompt design (Chen et al.,
2023; Zamfirescu-Pereira et al., 2023). A break-
through in prompt optimization, Chain-of-Thought
(CoT) prompting (Wei et al., 2022; Kojima et al.,
2022), enhances the reasoning ability by structur-
ing outputs into intermediate steps and explicitly
modeling multi-step reasoning, improving tasks re-
quiring logical deduction, arithmetic calculations,
and commonsense reasoning (Sprague et al., 2024).
However, CoT does not inherently ensure robust-
ness, as it propagates errors from incorrect interme-
diate steps and struggles with generalization (Saba,
2023; Chu et al., 2024).
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Figure 1: Overview of the proposed method of seman-
tic centrality selection for optimizing LLM prompts.
The incorrect response from the initial prompt is eval-
uated by an optimizer LLM, which provides specific
feedback. The masking is applied to specific informa-
tion (heat), generating multiple semantic candidates.
The most broadly applicable concept (a physical pro-
cess) is selected, leading to a more generalized feedback
statement. Finally, the prompt is updated to reflect the
generalized feedback.

Building upon the limitations of manual prompt
crafting and CoT’s reliance on carefully designed
exemplars, researchers have turned to automated
prompt optimization methods. An approach, Auto-
matic Prompt Engineer (APE) (Zhou et al., 2022),
formulates prompt generation as a black-box opti-
mization problem guided by LLMs, employing iter-
ative search and selection for high-quality prompts.
Similarly, PromptAgent (Wang et al., 2023b) in-
tegrates error-feedback-based strategic planning
with Monte Carlo tree search (MCTS) (Kocsis and
Szepesvari, 20006), treating prompt optimization as
a dynamic decision-making process where LLMs



iteratively refine and evaluate prompts.

Although these methods reduce human inter-
vention and enhance effectiveness, they remain
susceptible to overfitting, reinforcing task-specific
biases (Xu et al., 2024), failing to generalize be-
yond LLM-derived error feedback (Wang et al.,
2023a), and narrowing exploration. Overfitting oc-
curs when a model becomes excessively tuned to
specific prompts, reducing its adaptability to novel
queries (Giray, 2023). When this is repeated, the
model reinforces these biased contexts, further de-
teriorating performance over successive steps.

To overcome these challenges, we propose a
simple yet effective method of selecting semantic
centrality' that dynamically rephrases model feed-
back to extract more generalizable core concepts,
as illustrated in Figure 1. Our method masks overly
specific segments in the optimizer LLM’s feed-
back, generates multiple alternative responses, and
distills recurring key concepts that remain stable
across variations into the base LLM. Then, the base
LLM that receives generalized feedback applies a
broader concept to new prompts. Extensive em-
pirical evaluation shows that the proposed method
achieves superior generalization performance on
nine diverse tasks, including popular reasoning and
classification tasks.

2 Feedback Generalization

Our method is based on error-feedback-based plan-
ning with MCTS, similar to PromptAgent that is
publicly available>. We utilize MCTS, iteratively
searching for prompts through selection, expansion,
simulation, and back-propagation. In selection, we
follow the UCT algorithm (Kocsis and Szepesviri,
2006) to balance exploration and exploitation. In
expansion, the optimizer LLM generates feedback
(actions) and the base LLLM generates new differ-
ent prompts (states) (Wang et al., 2023b). These
undergo simulation, where a reward function eval-
uates their effectiveness, and the results are prop-
agated backward in back-propagation to prioritize
high-reward paths.

2.1 Semantic Rewording

Algorithm 1 shows the action process of the pro-
posed method. Our action process begins with a
specialized prompt template 7, which incorporates
the initial prompt P. Specifically, this template

'Our code will be available at https://example.com/.
2https://github.com/XinyuanWangCS/PromptAgent.

Algorithm 1 Semantic Centrality Selection

Require: Prompt template: 7, Optimizer LLM:
O, Embedding model: g
Generate (F,C,C") + O(T)
S+ o
for i < 1to M do
for all ¢ € C; do
s+ F
s < replace ¢; in s with ¢},
S+ SUs
end for
end for
Compute E < ¢(S5)
: Compute I(s) = > cs(€s,€y)
. Fy < argmaxges I(s)
: return F

D AR AN > s
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W N = O

guides the optimizer LLM O to identify exactly
M segments, C, within P that are too specific in
the domain. Each identified segment ¢; € C is
then replaced with a unique placeholder token, de-
noted as [MASK;] fori = 1,..., M, and for each
masked segment, the model generates precisely
IC alternative candidate replacements, collectively
represented as C; = {c|,ch,--- ,¢jc} CC.

This process can be formalized as a transfor-
mation O : T — (F,C,(’), where the optimizer
LLM O generates the initial feedback text F with
the prompt template 7, masked placeholders M
and the corresponding candidate substitutions C’,
allowing a structured and systematic refinement of
the original prompt (Madaan et al., 2023). It plays
a crucial role in ensuring robustness and adaptabil-
ity. Rather than relying on a single sentence, the
incorporation of diverse alternatives allows for a
more broader exploration of possible sentences.

2.2 Semantic Centrality-based Selection

After the candidate generation process, the seman-
tic centrality selection strategy is employed to de-
termine the most general and robust feedback. Let
each candidate s € S be assigned to a vector
embedding e, € R? by a text embedding model
g : S — R? The similarity between two candi-
dates s and s’ is quantified by the inner product
(es,ey). We then define a score I(s) for each
candidate as following equation

I(s) = Z(es,es/). €))

s'eS
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Method BIG-Bench tasks General NLU tasks Total Avg.
Penguins Geometry Epistemic Obj. Count. Temporal Causal Judge. Avg. Subj TREC CB  Avg.
Human (ZS) 98.73 48.00 84.40 78.80 91.00 64.00 7749 66.80 65.60 8036 70.92 75.30
Human (FS) 97.47 41.50 80.60 49.40 93.40 58.00 70.06 8530 7520 8571 82.07 74.06
CoT (ZS) 97.47 55.50 82.00 93.20 90.80 65.00 80.66 67.80 65.00 87.50 73.43 78.25
CoT 97.47 69.50 87.40 93.80 96.80 66.00 85.16 79.60 77.40 85.71 80.90 83.74
PromptAgent  98.73 77.50 89.20 94.80 99.60 67.00 87.81 7390 8540 82.14 80.48 85.36
Ours 98.73 85.00 89.20 96.20 98.60 69.00 89.46 80.00 86.00 82.14 82.71 87.21

Table 1: Comparison across BBH tasks and General NLU tasks. Test accuracy (%) is reported.

This score reflects the degree to which a given can-
didate represents the overall set in the embedding
space. In practice, we compute the embedding ma-
trix B € RISI%?, where each row corresponds to an
embedding ey, and then obtain I(s) by adding the
rows of the matrix product EE". The candidate
feedback texts are ranked based on their scores, and
we select the top-1 index as generalized feedback
F4, marginalizing the others.

The score I(s) quantifies how central a candi-
date is within the overall distribution in the embed-
ding space. Since semantically similar embeddings
cluster together (Elekes et al., 2017), this score
tends to prioritize candidates near the centroid of
the distribution. A previous work (Saba, 2023)
suggests that such central representations often cor-
respond to higher-level abstractions, making them
more generalizable. Consequently, this method re-
duces the reliance on domain-specific expressions
and favors feedback that is more broadly applicable
across diverse contexts.

3 Experiments

3.1 Set-up

Datasets. The datasets are used to evaluate the
effectiveness of prompt optimization on various
reasoning and classification tasks from a subset
of challenging BIG-Bench tasks (Suzgun et al.,
2023; Srivastava et al., 2023) (Penguins in a ta-
ble, Object Counting, Epistemic Reasoning, and
Temporal Sequences) and general natural language
understanding (NLU) tasks, i.e., Subjective (Pang
and Lee, 2004), TREC (Voorhees and Tice, 2000),
and CB (De Marneffe et al., 2019). Each dataset
is divided into train, validation, and test sets. A
detailed description of the datasets is reported in
Appendix C.

Baselines. For baseline comparisons, we con-
sider both human-crafted and automatically opti-
mized prompts. The human prompt (ZS) and the
few-shot version of human prompt (FS) (Suzgun

et al., 2023) baselines provide a reference for man-
ually designed prompts, while CoT and zero-shot
version of CoT (ZS) serve as strong reasoning-
based baselines. Meanwhile, PromptAgent em-
ploys MCTS to automatically optimize prompts.
These baselines ensure that we can rigorously eval-
uate whether our method outperforms both man-
ual and automated prompt generation techniques
across different types of problems.

Implementation Details. In the experiment, we
use the same evaluation framework as PromptA-
gent, GPT-40 mini as the base LLM, GPT-4 turbo
as the optimizer LLM, and the text embedding
model g as text-embedding-3-large from Ope-
nAT. In all experiments, we set M to 2 and K to
50 for the purpose of computational efficiency. We
set the temperature to 0.0 for the base LLM and
1.0 for the optimizer LLM. We set the number of
iterations for MCTS to 12, adding 3 children of the
leaf node to the tree, the maximum depth to 8, the
minimum depth to 2, and the exploration weight to
2.5 for UCT Algorithm. We select the test accuracy
based on the node with the highest reward, which
is calculated on the validation set.

3.2 Comparative Accuracy

Table 1 compares the proposed method with several
baselines, including human baselines, CoT base-
lines, and PromptAgent, on both BBH and General
NLU tasks. Specifically, on the six BBH tasks, our
method achieves the highest average accuracy of
89.46%, surpassing PromptAgent’s §7.81%. In the
three general NLU tasks, our method reaches an av-
erage of 82.71%, compared to 80.48% from Promp-
tAgent. As a result, our method attains the highest
total average of 87.21%. These results demonstrate
that incorporating more generalized feedback to
the base LLM can enhance both the specialized
problem-solving abilities and the broader language
understanding skills of LLM. This is particularly

3ht’cps: //openai.com/
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Figure 2: Comparison with different feedback strategies,
highlighting the impact of our generalization method.

evident in tasks like Geometry, where our method
outperforms other approaches by at least 7.5%p,
allowing the base model to explore broader concep-
tual reasoning steps. This can be viewed as exces-
sively specific feedback can constrain the model
to a narrow line of thinking and hinder its ability
to adapt to unexpected problem variations, thus
reducing overall performance.

3.3 Generalization Ability

Figure 2 shows the effects of error feedback
on model performance in CoT settings, focus-
ing on the overfitting issue. While incorporat-
ing error feedback (CoT+FB) leads to overfitting
and reduces performance, generalized feedback
(CoT+Generalized FB) improves generalization,
demonstrating significant performance boosts. The
proposed method, which combines generalized
feedback with MCTS, further enhances perfor-
mance, leading to more consistent results. More
details are reported in Appendix F.

3.4 Convergence Analysis

Figure 3 shows the performance trends in vary-
ing tree depths for Human, CoT, PromptAgent
(Base), and the proposed method (Ours) in the
task of Object Counting. The trajectories illus-
trate the evolution of average performance during
both training (reward) and testing steps. As tree
depth increases, ours consistently outperforms the
base model, demonstrating superior generalization
by effectively narrowing the gap between training
and testing performance. Notably, ours not only
achieves higher performance after full exploration,
but also shows a better result over Human and CoT
baselines even at earlier depths.

3.5 Cost Efficiency

Figure 4 compares our method with the baseline
(PromptAgent) in terms of cost and test accuracy in
various tasks. Despite incorporating an additional

0.96 0.96
______3‘35___.3;‘;3 - .8.33__%___&%_.._&gg___&gg---Sﬁi.
0.9 8:89 882 0.87

0.86 084 0.85

0.8 _gz_g ______________________________________________
0.7 o W 0.68
e
3
506 --- Human s
< -—= CoT
0.5 Avearge train path (Base)
Avearge test path (Base)
0.4 Avearge train path (Ours)
Avearge test path (Ours)
0.3
0 1 2 3 4 5 6 7 8
Depth

Figure 3: Convergence analysis of different methods
based on tree depth in the task of Object Counting.
Shaded regions indicate the variance.
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Figure 4: Cost analysis of our method (triangles) and
the baseline (squares) in both cost and test accuracy.
Each task is represented by different colors.

embedding model, ours achieves a lower average
cost (6.34 USD vs 7.74 USD) while achieving a
higher test accuracy, as reported in Table 1. This
suggests that our method not only improves accu-
racy, but also reduces search costs more effectively.
Furthermore, it indicates that our generalization has
ability to condense contexts (Zhou et al., 2022).

4 Concluding Remarks

In this paper, we identify the risk of prompt over-
fitting in LLMs and emphasize the necessity of
prompt generalization to achieve robust prompts.
Furthermore, our findings show that properly gen-
eralizing the context can effectively mitigate the
risk. Building on these findings, we propose a sim-
ple method called semantic centrality selection that
restructures model feedback to extract general core
concepts while reducing reliance on task-specific
patterns. Through extensive experiments across
nine tasks, our method demonstrates superior gen-
eralization while reducing cost.



Limitations

While effective in the general tasks tested, its per-
formance in specialized domains is still uncertain
and may rather decrease. Moreover, our method
can be computationally intensive, especially with
many candidates. Furthermore, the use of another
pre-trained model and additional algorithms raises
concerns about increased computational costs. Our
future work will focus on balancing generalization
with the domain-specific details required in com-
plex reasoning scenarios.

Ethical Statement

We follow fundamental ethical principles to ensure
responsible use of datasets while minimizing po-
tential social harms. All datasets are sourced from
publicly available materials and used in accordance
with applicable privacy and copyright regulations.
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A Reproducibility Statement

In all experiments, we used OpenAl’s API and
acknowledge that the experimental results may
vary depending on the knowledge cutoff of
the models provided by OpenAl. The knowl-
edge cutoff* for GPT-40 mini is October 2023,
for GPT-4 Turbo is December 2023, and the
text-embedding-3-small model was released in
January 2024. Nevertheless, to ensure reproducibil-

ity, we provide our source code for public access’,

4https ://platform.openai.com/docs/models.
SNot during review.

the data split details in Table 2, exact input prompts
in Table 3, 5, 6, and 7, and templates in Table 4.
In addition, we manually set the seeds to 42 as the
dataset loader incorporates some degree of random-
ness.

B Computing Environment and License

All experiments were conducted on Ubuntu
22.10, with an Intel(R) Xeon(R) Gold 6326 CPU
(2.90GHz) and NVIDIA A100 GPUs (80GB). The
source code for this study is adapted from PromptA-
gent (licensed under Apache-2.0). All the datasets
used in the experiments are publicly available.

C Dataset Description

We use six tasks from Big-Bench® (Srivastava et al.,
2023), and three common NLU tasks. The descrip-
tion of each task is as follows.

Task Train Val.
Penguins in A Table 70 70 79

Test

Geometry 150 150 200
Epistemic Reasoning 300 200 500
Object Counting 150 150 500
Temporal Sequences 150 150 500
Causal Judgement 90 90 100
Subjective 200 200 1000
TREC 200 200 500
CB 125 125 56

Table 2: The number of samples in the training, valida-
tion, and test data split.

Big-Bench tasks. The Penguins in A Table
task presents a structured reasoning challenge in
which models must answer questions based on a
tabular representation of penguin attributes. Each
row corresponds to an individual penguin, and at-
tributes such as age, height, and weight are pro-
vided. It requires the model to extract relevant
information from the table, perform numerical rea-
soning.

The Geometry task tests the model’s ability to
recognize and classify geometric shapes based on
their scalable vector graphics (SVG) paths. It con-
tains a variety of simple and complex geometric
figures, and the task demands an understanding of
how sequences of drawing commands correspond
to different shapes.

https://github.com/google/BIG-bench.
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In the Epistemic Reasoning task, models must
determine whether a given premise entails a hy-
pothesis. It evaluates the model’s ability to rec-
ognize epistemic distinctions, such as differentiat-
ing between beliefs and factual statements. Some
statements involve indirect inferences or degrees of
uncertainty, making it necessary for the model to
reason beyond simple surface-level text matching.

The Object Counting task focuses on numer-
ical reasoning by presenting scenarios in which
objects are grouped or described in varying ways.
The challenge requires the model to correctly count
items while accounting for linguistic ambiguities,
such as plural forms, implicit quantities, and collec-
tively referenced objects. It is particularly useful
for assessing how well the models handle numeracy
and aggregation.

The Temporal Sequences task assesses the
model’s ability to understand and reason about
chronological events. Given a sequence of activi-
ties, the model must infer when a particular event
could have taken place. It involves constraints such
as available time slots, activity durations, and event
dependencies, which requires the model to accu-
rately track and manipulate time-based informa-
tion.

The Causal Judgment task evaluates the
model’s understanding of causal relationships.
Given a scenario, the model must determine
whether an event was a direct result of a preced-
ing action or simply correlated. It is particularly
challenging, as it requires distinguishing between
correlation and causation, as well as recognizing
implicit intentions behind actions.

General NLU. The Subjective’ (Pang and Lee,
2004) consists of text classification examples in
which the model must determine whether a given
sentence is subjective or objective. Subjectivity is
typically marked by personal opinions, emotions,
or qualitative judgments, whereas objectivity is as-
sociated with factual statements. The challenge
involves correctly identifying linguistic cues that
signal subjective interpretation without being mis-
led by neutral descriptive language.

The TREC? task (Voorhees and Tice, 2000) is a
well-established question classification benchmark.
Given a natural language question, the model must
categorize it into one of several predefined types,
such as entity, abbreviation, location, or numeric

"https://huggingface.co/datasets/SetFit/subj.
8https://huggingface.co/datasets/CogComp/trec.

value. It tests the model’s ability to interpret the in-
tent behind a question and align it with a structured
taxonomy of possible responses.

The CB? task (De Marneffe et al., 2019) is de-
signed for natural language inference, requiring
models to determine whether a hypothesis is en-
tailed, contradicted, or neutral concerning a given
premise. It contains sentences with varying lev-
els of implicit meaning, requiring careful semantic
interpretation to distinguish between direct entail-
ment, contradiction, and unrelated statements.

D Human Prompts

We report the human prompts used in our exper-
iments in Table 3. These prompts serve as the
base input for prompt optimization, with additional
task-specific prompts—covering task descriptions,
questions, and answer formats—incorporated for
each sample.

E Feedback Template

The exact template used to generate feedback is
reported in Table 4. We create the template con-
sidering the planning process with mini-batching.
This template facilitates a structured approach to
analyzing incorrect examples, identifying specific
segments, and generating semantic replacements.

F Details of Feedback Analysis

Figure 2 investigates the impact of different feed-
back mechanisms on the performance of the model
within a few-shot CoT framework. Specifically,
we evaluate the risk of overfitting induced by error
feedback in models that take advantage of a few-
shot CoT. The experimental setup compares sev-
eral configurations: the baseline few-shot CoT (Ta-
ble 5), a version with feedback integrated into the
training process (CoT+FB, Table 6), a variation em-
ploying generalized feedback (CoT+Generalized
FB, Table 7), and the proposed method which inte-
grates generalized feedback with MCTS (Ours).
The comparison of Tables 5, 6, and 7 highlights
key information on the role of feedback in prompt-
ing strategies. The baseline few-shot CoT (Table 5)
follows a step-by-step reasoning approach, ensur-
ing interpretability and logical breakdown. How-
ever, it lacks explicit feedback to guide error cor-
rection, making it susceptible to systematic errors.

9https: //huggingface.co/datasets/aps/super_
glue.
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Task Human prompt

Penguins in A Table Answer questions about a table of penguins and their attributes.

Geometry Name geometric shapes from their SVG paths.

Epistemic Determine whether one sentence entails the next.

Object Count Questions that involve enumerating objects of different types and asking
the model to count them.

Temporal Answer questions about which times certain events could have occurred.

Causal Judge. Answer questions about causal attribution.

Subj Given the text, choose between ’subjective’ and ’objective’.

TREC Tag the text according to the primary topic of the question. Choose from
(A) Abbreviation, (B) Entity, (C) Description and abstract concept, (D)
Human being, (E) Location, (F) Numeric value.

CB Read carefully the following premise and hypothesis, and determine the

relationship between them. Choose from ’contradiction’, *neutral’ and

’entailment’.

Table 3: Human prompt used in the experiments.

Incorporating direct error feedback (CoT+FB,
Table 6) improves interpretability by explicitly ad-
dressing common mistakes, as seen in the high-
lighted incorrect answers and explanations. Al-
though this provides immediate correction, it risks
overfitting the model to specific feedback patterns,
as it tends to memorize corrections instead of devel-
oping a more generalized problem-solving strategy.
This issue is evident in the experimental results,
where CoT+FB performs less well compared to
the standard CoT, with a lower average accuracy
(0.8079 vs. 0.8344). The decline is especially no-
ticeable in tasks requiring flexible reasoning, such
as Geometry.

To mitigate this, the CoT+Generalized FB ap-
proach (Table 7) introduces a structured feedback
mechanism that not only identifies errors but also
generalizes the reasoning process by categorizing
object types explicitly. This method reinforces
filtering and classification skills, improving gen-
eralization in various tasks. As a result, it outper-
forms CoT+FB with an average accuracy of 0.8304,
demonstrating a stronger ability to handle tasks that
require adaptive problem-solving.

The proposed method, which integrates general-
ized feedback with MCTS, further enhances this ap-
proach by dynamically guiding the reasoning pro-
cess and mitigating the risk of overfitting. Includ-
ing MCTS facilitates a more robust exploration of
reasoning paths, allowing for a balanced approach

between specific error correction and generaliza-
tion. This results in superior performance across
multiple domains, particularly in tasks that require
abstraction and long-term dependencies.

In conclusion, the observed performance gains
underscore the importance of designing feedback
mechanisms that do not anchor the model to spe-
cific error cases. Generalized feedback, unlike
error-specific feedback, promotes a more adaptable
reasoning process, helping the model to improve
its performance in tasks that require generalized
logical thinking. By combining generalized feed-
back with MCTS, our method effectively guides
the model towards more refined and contextually
appropriate solutions, providing a path to more ro-
bust and scalable few-shot learning systems.



Section

Description

Purpose

I’m writing prompts for a language model designed to handle various
scenarios in a general and robust way. This means the model must
identify or construct a solid plan that leads to correct, plan-oriented
answers.

Current prompt

Below is my current prompt: {cur_prompt}.

Issues

Despite aiming for a plan-based solution, this prompt fails to address the
following examples correctly: {example_string}.

Analysis

Please examine each incorrect example step by step.

- Concentrate on how the existing plan (or lack thereof) leads to the wrong
answer.

- Pay special attention to any deficiencies in how the prompt organizes
or outlines steps, rather than focusing on a single domain, version, or
specific detail.

Requirements

Then, produce an integrated feedback that addresses these common plan-
related issues collectively.

Your feedback should highlight any overarching problems in the prompt’s
plan, propose corrections or improvements to that plan, and ensure that
your advice remains sufficiently abstract and broadly applicable—avoid
overly specific or domain-constrained details unless absolutely necessary
for clarity.

Masking process

Next, identify exactly {mask_num} segments in your feedback that are
too narrow, overly technical, or domain-specific.

- Replace each identified sentence with a unique [MASK_n] placeholder
(e.g. [MASK_11, [MASK_21, ...).

- For each [MASK_n], propose {candidate_num} alternative candidates
that broaden or generalize the concept, so the final plan remains applica-
ble to a variety of scenarios.

Key reminders

- The goal is to understand the deeper, shared reasons for the planning
failures and how to create a more robust plan overall.

- The final feedback should be broadly applicable, rather than tailored to
a single domain or overly specific detail.

- The [MASK_n1] replacements and candidate phrases should reflect more
generalized or inclusive expressions.

Output formatting

Be sure that in the final feedback:

1. You only have {mask_num} total [MASK_n] tokens.

2. Each token has a different index (e.g., [MASK_1], [MASK_21, ... up to
[MASK_{mask_num}]).

3. You provide exactly { candidate_num} candidates for each [MASK_n].

Example

Feedback without [MASK]: [Your feedback in a single consolidated para-
graph or set of paragraphs, before inserting any [MASK]].

Feedback with [MASK]: [ Your feedback text, but with the identified overly
specific sentences replaced by [MASK_n]].

Then, for each mask token, provide candidates in the
form: <START>{Candidates_[MASK_1]:[candidate1l, e,
candidate_num]}<END>.

Table 4: Template for generating structured error feedback.



Input

Q: I have a blackberry, a clarinet, a nectarine, a plum, a strawberry, a banana, a flute, an orange, and a
violin. How many fruits do I have?

A: Let’s think step by step.

We first identify the fruits on the list and include their quantity in parentheses:
- blackberry (1)

- nectarine (1)

- plum (1)

- strawberry (1)

- banana (1)

- orange (1)

Now, let’s add the numbers in parentheses:

I+1+1+1+1+1=6.
The answer is 6.
Q: I have three oranges, a piano, an apple and two clarinet. How many musical instruments do I have?

Output

We first identify the musical instruments in the list:
- piano (1)

- clarinet (2)

Now, let’s add the numbers:

1+2=3.
The answer is 3.

Table 5: Baseline few-shot chain-of-thought prompting (CoT). This setting provides step-by-step reasoning without
error feedback, ensuring clear logic flow. The context, highlighted in blue , structured thought decomposition,
emphasizing the identification and categorization of relevant objects.
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Input

Q: I have a blackberry, a clarinet, a nectarine, a plum, a strawberry, a banana, a flute, an orange, and a
violin. How many fruits do I have?

A: The most common wrong answer is 9.
The mistake occurs when people count all listed objects instead of filtering out the non-fruits.
Items such as "clarinet," ''flute,'" and ''violin'' are not fruits and should not be included in the

total count.
Let’s think step by step.

We first identify the fruits on the list and include their quantity in parentheses:
- blackberry (1)

- nectarine (1)

- plum (1)

- strawberry (1)

- banana (1)

- orange (1)

Now, let’s add the numbers in parentheses:

1+1+1+1+1+1=6.
The answer is 6.

Q: I have three oranges, a piano, an apple and two clarinet. How many musical instruments do I have?

Output

We first identify the fruits on the list and include their quantity in parentheses:
- orange (3)

- apple (1)

Now, let’s add the numbers in parentheses:

3+1=4.
The answer is 4.

Table 6: Few-shot chain-of-thought prompting with error feedback (CoT+FB). This setting incorporates explicit
error identification, as highlighted in red , allowing the model to recognize common mistakes. The cyan-colored
context still emphasizes logical reasoning but may lead to overfitting by enforcing rigid feedback structures.
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Input

Q: I have a blackberry, a clarinet, a nectarine, a plum, a strawberry, a banana, a flute, an orange, and a
violin. How many fruits do I have?

A: The most common wrong answer is 9, the total number of items in the list.
Errors occur when people fail to differentiate between relevant and irrelevant objects.

It is important to filter out objects that do not belong to the target category.

Let’s think step by step.

We first identify the fruits on the list and include their quantity in parentheses:
- blackberry (1)

- nectarine (1)

- plum (1)

- strawberry (1)

- banana (1)

- orange (1)

Now, let’s add the numbers in parentheses:

1+1+1+1+1+1=6.
The answer is 6.

Q: I have three oranges, a piano, an apple and two clarinet. How many musical instruments do I have?

Output

We first identify the objects that belong to the target on the list and
include their quantity in parentheses:

- orange (3, not a musical instrument)

- piano (1, musical instrument)

- apple (1, not a musical instrument)

- clarinet (2, musical instruments)

Now, let’s add the number of musical instruments:

1 (piano) + 2 (clarinets) = 3.
The answer is 3.

Table 7: Few-shot chain-of-thought prompting with generalized error feedback (CoT+Generalized FB). This setting
refines error feedback by introducing a more structured approach, highlighted in yellow , which guide the model in
differentiating between relevant and irrelevant objects. The structured feedback promotes better generalization and
mitigates overfitting risks.
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