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Abstract

Effectively integrating both local and global in-
formation is crucial for graph classification, as it
ensures that graph neural networks (GNNs) cap-
ture fine-grained local structures while leveraging
the global topology. However, traditional GNNs
primarily excel at extracting local patterns but of-
ten failing to capture the graph’s global proper-
ties. Recent reaction-diffusion based methods ap-
pear well-suited for local-global integration but
lack of stabilizing and balancing these features.
In this work, we propose Blend-GNN, a novel
model, designed to selectively and adaptively in-
tegrate both global and local patterns. We employ a
reaction-diffusion process specifically designed to
extract stable local and global patterns, enabling
the model to effectively capture both node-level
and graph-level aspects. These two representa-
tions are adaptively aggregated to achieve a bal-
anced representation, effectively excluding redun-
dant information by focusing on patterns most rel-
evant to classification. Furthermore, the model of-
fers interpretable insights into how global and lo-
cal patterns synergistically contribute to graph clas-
sification, enhancing its explainability. Extensive
experiments on 8 benchmark datasets demonstrate
that our Blend-GNN outperforms the state-of-the-
art models, achieving significant improvements up
to 3.8%p over baselines. Additionally, further anal-
yses validate the effectiveness of our approach, pro-
viding a deeper understanding of the local-global
interplay.

1 Introduction

Graph neural networks (GNNs) have emerged as a power-
ful tool for handling graph-structured data by leveraging their
ability to learn representations that capture both node fea-
tures and graph topology [Cai er al., 2018; Wu et al., 2020;
Beaini et al., 2021; Veli¢kovi¢ et al., 2018]. Graph classifica-
tion, a critical task in graph-based learning, involves predict-
ing labels for entire graphs by leveraging their structural and
attribute information. The ability to effectively integrate local

patterns, derived from node neighborhoods, with global struc-
tures, reflecting the graph’s overarching topology, is essential
for building robust graph classification models [Velickovi¢ er
al., 2018]. Striking this balance is challenging, as most ex-
isting methods struggle to capture long-range dependencies
while preserving critical local distinctions [Wei ef al., 2023].

Traditional graph neural networks (GNNs), such as graph
convolutional networks (GCN) [Kipf and Welling, 2016] and
graph attention networks (GAT) [Veli¢kovié er al., 2018], rely
on neighborhood aggregation mechanisms, where node fea-
tures are updated by aggregating information from immedi-
ate neighbors. While this approach captures local patterns
effectively, it often fails to propagate information over long
distances, making it difficult to learn meaningful global rep-
resentations [Yu et al., 2024]. Deepening GNN layers to
address this issue frequently leads to over-smoothing, where
node representations become indistinguishable [Rusch et al.,
2023].

Recent works have sought to address these issues by in-
troducing techniques that extend beyond traditional message-
passing. Hierarchical pooling-based GNNs, such as Diff-
Pool [Ying et al., 2018], coarsen graphs into multi-scale
representations by learning soft cluster assignments. It al-
lows models to capture both local and global structures, en-
hancing their expressiveness for graph-level tasks. How-
ever, the reliance on dense cluster assignment matrices in-
troduces significant computational overhead, making these
methods less practical for large-scale graphs. Transformer-
based GNNs, such as GraphTransformer [Dwivedi and Bres-
son, 20201, Graphormer [Ying et al., 2021; Shi er al., 2022],
SAN [Kreuzer et al., 20211, and GraphGPS [Rampések e al.,
2022], leverage the global receptive field of Transformer ar-
chitectures by incorporating local information. This allows
the model to learn both local and global patterns, but the re-
quirement for dataset dependant encodings and memory bud-
get can limit their generalizability across diverse graph do-
mains [RampaSek er al., 2022]. Contrastive learning-based
methods such as GraphCL [You et al., 2020], AutoGCL [Yin
et al., 2022] and InfoGraph [Sun et al., 2019] generate aug-
mented graph-level and node-level representations and max-
imize mutual information between different levels of repre-
sentations (e.g., nodes, edges, and subgraphs). While these
methods align local and global representations [You et al.,
20201, their dependence on contrastive learning introduces



large and carefully curated datasets for effective training,
as its performance depends heavily on generating meaning-
ful positive and negative pairs. Concurrently, neural ODE-
based GNNs such as GRAND [Chamberlain et al., 2021]
have emerged. GRAND applies the diffusion process with
deep layers to graphs, effectively preventing oversmooth-
ing and enabling the learning of robust global representa-
tions [Wei et al., 2023]. GREAD [Chamberlain et al., 2021;
Choi et al., 2023] improves upon GREAD by integrating dif-
fusion process with reaction process which leads local pat-
terns. By leveraging both local and global, it achieves strong
performance on diverse graph types. Despite their promise,
it lacks systematic mechanisms to stabilize the interplay be-
tween local and global features, which can lead to inefficien-
cies and suboptimal representations.

Building on these insights, we propose Blend-GNN', a
novel GNN that adaptively integrates local and global in-
formation using a principled reaction-diffusion mechanism.
Blend-GNN addresses the limitations of existing methods, in-
cluding over-smoothing, long range dependencies [Dwivedi
et al., 2022c], and the lack of dynamic adaptivity in balancing
local-global features. To ensure stability of reaction-driven
representation, we propose a regularization term that mini-
mizes the discrepancy between the initial encoding and its
diffusion-transformed state. Afterward, the two representa-
tions from each diffusion and reaction are adaptively fused
through a learnable method dynamically balances the contri-
butions of global representation and local representation at
both node and graph levels, ensuring task-specific adaptabil-
ity, namely, blending.

We evaluate our model on eight benchmark datasets with
diverse domains and characteristics, and compare its perfor-
mance against twelve baseline methods. The experimental
results verify the effectiveness of our model by achieving the
state-of-the-art performance, and highlight the importance of
integrating local and global information at both node and
graph levels in GNNs.

The key contributions of this work are as follows:

* We propose a novel model Blend-GNN that blends
global information from diffusion processes and local
information derived from reaction processes at both the
node-level and graph-level.

* We empirically demonstrate significant performance
gains across eight benchmark datasets, outperforming
state-of-the-art baselines, while also showcasing how
the integration of local and global information in our
Blend-GNN contributes to graph classification at both
the node and graph levels.

* It lays the groundwork for further exploration of local-
global multi-level techniques in GNNs, with the poten-
tial to be applied in a wide range of real-world applica-
tions.

'Our source code will be available at https://example.com.

2 Preliminaries

2.1 Graph Classification

Given a graph G = (V, FE) where V and E are set of nodes
and edges with node features X € RIVIXdx we aim to learn
a classification model which predicts target class label y from
the source G.

Graph classification often rely on mechanisms that model
the flow and transformation of information across the graph
structure. Among these mechanisms, diffusion and reaction
processes play a fundamental role in capturing both smooth
global patterns and distinct local features within graphs.

2.2 Encoding Layer

We use the following L-layer encoder network € : R4 —
R?" to map the features of V to an initial encoding h(0) €
RIVIxdn which serves as the starting point for further pro-
cessing in neural networks, defined as:

e(z, 00Dy = 0o (0L Vo (.. 0P a(0Wa))), (1)

where QEI) represents the parameters of the [-th layer for 1 <
[ < L and ¢ is a non-linear activation function.

2.3 Diffusion on Graphs

Neural diffusion on a graph, introduced by [Chamberlain et
al., 2021], refers to the process by which information propa-
gates between connected nodes, leading to a smoothing effect
on node features. This process is mathematically modeled us-
ing the graph Laplacian, which encapsulates the connectivity
structure of the graph. The diffusion process is governed by
the differential equation:

d(t) .= —aLh(t), (3)

dt

where f is a neural network parameterized by the parame-
ters of the model, h(t) € RIVI*@ is the node encodings
at time ¢, L is the normalized graph Laplacian defined as
L =1—-D"1'Y24D"Y2 and o € R% is a learnable pa-
rameter controlling the rate of diffusion. Here, A represents
the adjacency matrix of the graph, D is the degree matrix,
and I is the identity matrix. This reduces disparities between
connected nodes, effectively smoothing the features over the
graph acting as a low-pass filter, propagating information in a
way that diminishes high-frequency variations. This ensures
that nodes with strong connections converge toward similar
feature representations.

2.4 Reaction on Graphs

In contrast to diffusion, reaction processes emphasize feature
amplification and differentiation between nodes. These pro-
cesses often model non-linear interactions that highlight local
structural properties of the graph [Choi er al., 2023]. On a
graph, reaction terms are frequently expressed as:

(Wihi(0))" (Woh;(0))
Vix

A;j := softmax(

) 4)


https://example.com

dfd—(t) = B(A = A)h(1), )
t

where A, ; is the (i,7)-th element of A, called attention
weight matrix composed of learnable parameters that weigh
the degree of information exchange between nodes [Cham-
berlain et al., 2021; Choi et al., 20231, Wx € R%m and
Wq € R4m are learnable parameters, dx is the scale factor,

and A? accounts for higher-order interactions between neigh-
boring nodes. The parameter 3 € R% controls the intensity
of the reaction process.

Unlike diffusion, which smooths node encodings, reaction
processes focus on enhancing differences and separating node
encodings based on their structural roles within the graph.
It has an sharpening effect which allows the model to cap-
ture localized patterns, such as clusters or boundary distinc-
tions [Choi et al., 2023].

3 Proposed Method
3.1 Global Initial Encoding

To achieve a unified local-global representation on graph-

structured data, the combination of two terms is a choice for

tasks that require learning a nuanced balance of global and

local properties. The governing equation and the solution is:
df (t)

= = —oLh() + (A~ A)ht), ©)

h(T) = h(0) +/0 (—aih(t) + B(A - AQ)h(t)) dt. (7)

It is solved by the Euler method [Atkinson et al., 2009],
which is a first-order numerical solver for ODEs with a given
initial value. It is defined as:

h(tis1) = h(te) + 7 f(h(tr), tk, Ora) ®)

where h(tx) is hidden representation at time ¢, 7 is the step
size, which plays a crucial role in the accuracy of the Euler
method (i.e., a smaller 7 leads to a more accurate h(7") but
requires more computational resources, while a larger 7 re-
duces computational overhead with the sacrifice of accuracy).
By solving Eq. 7, we can extract both local and global infor-
mation. However, its success critically depends on the state
of the initial encoding 2(0). If h(0) is poorly arbitrary, it can
result in instability or suboptimal representations. To achieve
more stable and effective results, we suggest the initital en-
coding h(0) satisfies:

T
h(0) + /0 —aLh(t)dt = 0, )

which indicates that h(0) is perfectly balanced with its
diffusion-transformed state. In this condition, the diffusion
term ensures that h(0) is smoothed consistently with the
graph’s global topology, serving as a stable foundation for
the reaction term. This stability prevents noise amplification
or over-sharpening during the reaction process, leading to
more reliable and interpretable local-global representations.
By minimizing the mean squared error (MSE) between h(0)
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Figure 1: Overview of the local-global adaptive blending. This per-
forms node-level and graph-level blending based on the two repre-
sentation pairs, global from diffusion process and local from reac-
tion process, to obtain the final representation H for prediction.

and its diffusion-transformed state, the model explicitly trains
h(0) to approximate the graph’s global properties. What we
refer to as global encoding is defined as follows:

4 T
1 ~
Lop = WE [Ihi(0) +/ —aLh;(t)dt|?. (10)
i=1 0

3.2 Global-to-Local Representation via Reaction

By initializing /(0) with a diffusion-dominated global repre-
sentation, the need for further diffusion diminishes, allowing
the reaction term to primarily govern the encoding evolution.
This effectively simplifies the computation of h(T) as:

T ~ ~
h(T) :/0 B(A — A)h(t)dt, (in

where h(0) is absorbed into the initial conditions of the re-
action dynamics. In this reformulation, h(7") emerges purely
from the reaction term, driven by the global coherence al-
ready embedded in h(0).

3.3 Local-Global Adaptive Blending

The blending operates at both the node-level and graph-level
to selectively combine global and local information encoded
in (0) € RIVI*dn and h(T) € RIVIX4  The overview of
the method is shown in Figure 1. They are representations
derived from the initial node features (as global information)
after L layers of encoder ¢ and the final node features (as local
information) h(T") after T' time of neural reaction-diffusion
process. For each node v;, the node-level scores Sgjobal () and
Slocal (%) corresponding to the global vector /(0) and the local



vector h(T) are derived as follows:

s <h(0)7w¢>
i) = o, )] well "
iy (T w)
O = Tl Twoll -

where h;(0) and h;(T") are the i-th rows of h(0) and h(T'),
representing the feature vectors of node v;, wg € R% is a
learnable vector, and (-) is dot-product operator. Next, we
obtain the blending weights for each node:

exp(Sglobal (7))
exp(Sgiobal (7)) + exp(Siocal (1))’
exp(Socar (7))
exp(Sgiobal (%)) + exp(Siocar (7))

where ionat (i) and aiecal () are the softmax-normalized
weights for the global and local representations, respectively,
for node v;. The combined representation k) for node v; is
then computed as a weighted sum of the global and local rep-
resentations:

h = aglobal( )Sglobal( ) + O‘local(i)slocal(i)- (16)

This equation ensures that the final representation &, for each
node v; is a blend of the global and local information.

The above derivation primarily deals with the blending at
the node level. However, the mechanism can be generalized
to perform graph-level blending by considering global and
local representations aggregated over the whole graph. As-
sume that 7(0) = YLV 7;(0) and R(T) = S2IV) by (T) rep-
resent the aggregated global and local representations of the
G, respectively (e.g., sum-pooling, mean-pooling, and max-
pooling). The global-level scores Sgiopar and Sjocqr are derived
similarly:

ag]oba](i) = (14)

Oélocal(i) = (15)

(0w
)] Twall a7
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Slocal = 777 11 T 1
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where w,, € R% is a learnable vector. These scores are nor-

malized with the softmax function:

exp ( gglobal )

eXp(gglobal + exp(glocal) ’
exp(glocal)

exp(gglobal + eXp(glocal) ’

Finally, the graph-level representation 4’ and the final repre-
sentation H are derived as:

Ozglobal = (19)

(20)

Qocal =

B/ = dglobalgglobal ~+ Quocal Siocal - 2D
V]
Z . b, (22)

where H € RIV!X24n s the concatenation of the results from
node-level blending and graph-level blending, where the con-
tribution of each part is determined by the learned vector wy,
and wy,.

3.4 Training Objective

The final representation H is mapped to a prediction vector
¢ using fully connected (FC) layers, where § = FC(H). The
ground-truth labels y are represented using one-hot encoding.
The training objective is as follows:

C
Ecls = - Z Yi IOg(Ql)a
=1

Liotal = ActsLels + AGeLGE, (24)

where L is the cross-entropy loss [Zhang and Sabuncu,
2018]. We set Ay to 10 in all experiments. On the other hand,
we optimize f using the adjoint method [Chen et al., 2018]
by solving the ODE backward in 7" — 0, which efficiently
computes gradients. The adjoint method provides a memory
efficient, scalable, and accurate way to compute gradients.

for C classes, (23)

4 Experiments

4.1 Datasets

Graph classification datasets. To ensure diversity, we test
on a diverse set of real-world graph classification datasets, in-
cluding 1 small molecules dataset PTC_MR, 2 bioinformatics
datasets (D&D, PROTEINS) and 3 social networks datasets
(IMDB-B, IMDB-M, REDDIT-B). These are collected from
the TUDataset [Morris et al., 2020], a collection of graph
classification benchmark datasets.

Long-range graph benchmark. We also conducted exper-
iments on the long-range graph benchmark (LRGB) [Dwivedi
et al., 2022c], a recently introduced suite designed to assess
the ability of GNNs to capture long-range dependencies in
complex graph structures. Specifically, we test on Peptides-
func and Peptides-struct datasets from the LRGB. These re-
quire models to effectively capture and utilize global infor-
mation to handle not only local interactions but also distant
node interactions accross the entire graph.

We summarize the dataset details in Table 1 and further
details are reported in Appendix. To further investigate the
structural properties of the dataset, we analyze the average
graph diameter, which provides insights into the long-range
connectivity of the graphs.

Table 1: Dataset specification.

Dataset #1G| Avg. Avg.  dx Avg. Prediction ~ Metric
#|V|  #]|E| diameter task

PTC_MR 344 14.29 14.69 18 7.52 2-class Accuracy
D&D 1,178 28432 715.66 82 19.90 2-class Accuracy
PROTEINS 1,113 39.06 72.82 3 11.57 2-class Accuracy
IMDB-B 1,000 19.77 96.53 - 1.86 2-class Accuracy
IMDB-M 1,500 13.00 65.94 - 1.47 3-class Accuracy
REDDIT-B 2,000 429.63 497.75 — 9.72 2-class Accuracy
Peptides-struct 15,535 150.9  307.3 9 56.97 11-task AP
Peptides-func 15,535 150.9 307.3 9 56.97 10-task MAE

4.2 Implementation Details

For a fair comparison, 10-fold cross-validation [Wong and
Yeh, 2019] is used to report the mean and standard de-
viation for each experiment. In all experiments, we use



Table 2: Comparative performance on graph classification datasets. The mean = s.d. of 10 cross-validation folds are reported. The top is in
bold and the second is underlined.

Model PTC_MR D&D PROTEINS IMDB-B IMDB-M REDDIT-B
GCN 0.623+0.057 0.791£0.031 0.759+0.028 0.733+0.053 0.512+0.051 0.893+0.033
GraphSAGE - 0.658+0.049 0.659+£0.027 0.724+0.036  0.49940.050 0.843£0.019
GAT - - 0.747+£0.022  0.758+0.023  0.478+0.031 -
GIN-0 0.646+0.070  0.776£0.050 0.762+0.028 0.7514+0.034 0.523+0.028  0.924+0.025
DiffPool 0.634+0.010 0.769£0.044 0.752+0.040 0.7014+0.063 0.472£0.018 0.891+0.016
GraphCL - 0.786+0.004  0.744+0.005 0.71140.004 - 0.895+0.008
InfoGraph 0.617£0.014 0.729£0.018 0.744+0.003  0.7304£0.009 0.367£0.008 0.825+0.014
AutoGCL - 0.776+0.006  0.758+0.036  0.733+0.004 - 0.886+0.015
Graphormer 0.71440.052 - 0.763+0.027  0.703£0.009  0.489+0.020 -
GREAD 0.718+0.069  0.790£0.026  0.787+0.035 0.771+0.043 0.539+0.036 0.854+0.031
Blend-GNN (Ours)  0.724+0.064 0.829+£0.025 0.800+0.037 0.788+0.033 0.548+0.026 0.908+0.020

Adam [Kingma and Ba, 2017] as the optimizer and train the
model for 1000 epochs in each fold. We fixed the batch size
to 128. The learning rate is initialized at 0.001 and reduced
by 1% every 20 epochs. The weight decay is set to 1e-5. The
number of encoding layer L is set to 2. For the D&D and
REDDIT-B, the hidden dimension d}, is set to 64, while 128
for the remaining experiments. Further details can be found
in Appendix.

4.3 Comparison Baselines

For evaluating the effectiveness of Blend-GNN on graph clas-
sification benchmarks, we compare against a diverse set of
baseline models. These are selected to represent a wide range
of approaches, including traditional message-passing meth-
ods (GCN, GraphSAGE, GAT, GIN-0), hierarchical pooling
strategies (DiffPool), self-supervised and contrastive learn-
ing frameworks (GraphCL, InfoGraph, AutoGCL), and ad-
vanced attention-based Graphormer and reaction-diffusion-
based GREAD. Together, these baselines provide a com-
prehensive benchmark against state-of-the-art techniques for
capturing local and global patterns in graphs.

For LRGB, we adopt GINE [Hu et al., 2019], Gat-
edGCN [Bresson and Laurent, 2017], GraphTransformer,
SAN, and GraphGPS as baselines. These methods are cho-
sen because they are explicitly designed to address long-
range dependencies, a critical challenge in many graph-
based tasks. They incorporate Laplacian positional encoding
(LapPE) [Dwivedi et al., 2022a] and random walk structural
encoding (RWSE) and global aggregation strategies [Dwivedi
and Bresson, 2020; Kreuzer et al., 2021; Beaini et al., 2021;
Wang et al., 2022; Lim et al., 2022; Rampasek et al., 2022;
Dwivedi et al., 2022b].

4.4 Comparative Performance

Graph classification results. Our Blend-GNN achieves the
best performance on five out of six datasets and competitive
results on the remaining dataset REDDIT-B, as shown in Ta-
ble 2. It shows the generalizability of our approach across
diverse graph domains, including small molecules, bioin-
formatics, social networks. On the D&D dataset, we ob-
serve a performance improvement of up to 3.8%p compared

to the baseline. This indicates that Blend-GNN achieves
strong results even on datasets with a high average number
of edges. Although it does not achieve the best performance
on the REDDIT-B, it shows comparable results to the base-
line, showing its effectiveness even on datasets with a large
average number of nodes. Notably, Blend-GNN achieves out-
standing performance even on PTC_MR and IMDB-M, which
have a relatively small average number of nodes and edges.

LRGB results. Table 3 shows that Blend-GNN is compa-
rable to or even superior to Transformer-based GNNs such
as GraphTransformer, SAN, and GraphGPS, which leverage
a global receptive field of Transformer [Dwivedi and Bres-
son, 2020; Parmar et al., 2018; Wei et al., 2023] to cap-
ture long-range dependencies by explicitly encoding the lo-
cal positional information of nodes. It highlights our model’s
ability to handle not only local but also global graph-level
structural information. On the Peptides-func task, while
Transformer-based methods achieve higher average precision
(AP) of 0.6535, Blend-GNN remains highly competitive with
an AP of 0.6312. This further shows that Blend-GNN effec-
tively captures global dependencies and delivers robust per-
formance across diverse tasks.

From the results, we observe that Blend-GNN performs
well not only on datasets with low diameters, such as IMDB-
B and IMDB-M, but also on datasets with high diameters,
such as LRGB (see Table 1). This demonstrates the effective-
ness of our model across diverse domains and a wide range
of graph structures.

4.5 Ablation Studies

Table 4 presents the results of an ablation study conducted on
PROTEINS to analyze the contributions of key components.
It shows the accuracy of the model under different configura-
tions, highlighting the individual and combined contributions
of each component to the overall performance.

In the first row, the full method achieves the highest accu-
racy. The role of global encoding is evident when A\gg = 0,
leading to a drop in accuracy (See the first, second, fifth and
sixth row, which is GREAD). It demonstrates the importance
of global encoding in enhancing the local representation. We
further observe deeper insights into the influence of global



Table 3: Performance on long-range graph benchmark. The mean +
s.d. of 4 runs with different random seeds are reported.

Model Peptides-struct ~ Peptides-func
MAE | AP T

GCN 0.3496+0.0013  0.5930+0.0023
GINE 0.354740.0045  0.5498+0.0079
GatedGCN 0.34204+0.0013  0.5864+0.0077
GatedGCN+RWSE 0.33574+0.0006  0.6069+0.0035
GraphTransformer+LapPE  0.25294+0.0016  0.6326+0.0126
SAN+LapPE 0.2683+0.0043  0.6384+0.0121
SAN+RWSE 0.2545+0.0012  0.6439+0.0075
GraphGPS 0.25004-0.0005  0.6535+0.0041
GREAD 0.2683+0.0021  0.6186+0.0049
Blend-GNN (Ours) 0.2498+0.0020  0.6312+0.0056

Table 4: Ablation studies on PROTEINS.

Diffusion Global encoding Reaction Blending-level Accuracy T
Node Graph
v v v v v 0.800+0.037
v - v v v 0.794+0.037
v v v - v 0.797+0.047
v v v v - 0.793+0.047
v v v - - 0.79340.050
v - v - - 0.787+0.035
v v - - - 0.79140.047
v - - - - 0.791+0.039

encoding from the fifth to eight row. While global encoding
shows no effect when used with diffusion alone, a synergistic
effect can be observed when combined with reaction. This
is evidenced by the improved performance compared to the
case without global encoding.

We also observe that our blending at the node and graph
levels play a crucial role in the model’s performance. Dis-
abling node-level blending (in the third row) results in a slight
drop in accuracy. Similarly, removing graph-level blending
(in the fourth row) reduces the accuracy, reflecting its impor-
tance.

4.6 Analysis of Blending Ratios

Figure 2 shows the observed trends of blending ratios for
global and local at both the node and graph levels over 1000
training epochs for the PTC_MR and IMDB-B. It indicates
the relative contributions of global and local features to the
model’s predictions. Specifically, the decreasing ratio signi-
fies the exclusion of redundant information by focusing on
patterns most relevant to classification. The shaded regions
represent the variance across graphs and the batch of nodes.
For the PTC_MR, shown in Figure 2a, the ratios reveal dis-
tinct trends at both node and graph levels, with a clear di-
vergence in the importance of global and local information
as training progresses. The ratio at the node-level remains
stable around 50%p throughout training, indicating that both
local and global representations are important for node-level
tasks in the PTC_MR. At the graph level, the ratios exhibit a
contrasting dynamic. The contribution of global information
increases substantially, with the ratio rising from 50%p to ap-
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Figure 2: The observed blending ratio of global and local informa-
tion according to the training epochs.

proximately 55%p by the final epoch. It highlights the grow-
ing importance of high-level structural patterns for graph-
level predictions. Conversely, the ratio for local graph-level
information steadily decreases, dropping to around 45%p. It
suggests that local information at the graph level become less
critical as the model increasingly leverages global represen-
tations.

In the IMDB-B, shown in Figure 2b, the ratios demonstrate
a markedly different behavior, particularly in the relative con-
tributions of global and local information at both levels. The
both ratios for global information decreases modestly, drop-
ping from approximately 50%p to around 48%p by the final
epoch. It underscores the growing importance of local infor-
mation in the IMDB-B, where the interactions between in-
dividual nodes may play a more significant role. In fact, as
shown in Table 1, IMDB-B graphs have relatively small node
counts, a high number of edges and low diameter, resulting
in a high connectivity, which suggests that local information
plays a crucial role.

The contrasting trends in ratios between two datasets
shows the domain-specific nature of global and local inte-
gration. In PTC_MR, the growing reliance on global graph-
level information suggests that capturing graph-level patterns
is critical for achieving higher performance. It implies that
we can consider designing models for PTC_MR to incorpo-
rate mechanisms that emphasize global graph-level represen-
tations. For IMDB-B, we can consider focusing on extracting
local features as it implies that global information is less crit-
ical.

4.7 Sensitivity Analyses

The sensitivity analysis presented in Figure 3 evaluates the
effects of two hyperparameters, 1" and step size 7 , on test ac-
curacy and training time. These results provide insights into
the trade-offs between computational efficiency and predic-
tive performance.

Accuracy analysis. Figure 3a shows the relationship be-
tween test accuracy and the two hyperparameters. T' , rep-
resented on the horizontal axis, increases from left to right,
while the step size 7 decreases from bottom to top. Test ac-
curacy, visualized along the Z-axis (color gradient), demon-
strates a highly non-linear dependence on both 7" and 7. A
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Figure 3: 3D visualization of sensitivity results w.r.t 7' € [1, 8] and
step size 7 € [0.1, 1] on PROTEINS.

key observation is the presence of a peak in test accuracy
at approximately 7' ~ 2 and 7 =~ 0.1, where the accuracy
reaches its maximum value of approximately 0.8. This region
suggests that moderate values of both 7" and 7 are optimal
for achieving the best performance. However, the accuracy
sharply declines in regions with excessively high or low val-
ues of 7, emphasizing the sensitivity of the model to the step
size. The results also indicate that accuracy becomes lower
as T increases beyond T' > 4, likely due to underfitting as it
needs a tight time step.

Training time analysis. Figure 3b shows the impact of T’
and 7 on training time, measured in seconds per epoch. Train-
ing time increases with 7", as expected, since more iterations
correspond to longer computation. However, 7 also influ-
ences training time. Smaller values of 7 lead to slower con-
vergence and, consequently, longer training times. The min-
imum training time (11.02 seconds per epoch) is observed
at the lowest 7' = 1 and the largest 7 = 1. Conversely,
training time grows significantly as 7" increases or 7 becomes
smaller 7 < 0.5, reflecting the higher computational cost of
fine-grained optimization or excessive iterations.

Practical implications. We observe the importance of
carefully tuning 7" and 7 to achieve the desired balance be-
tween performance and efficiency. It highlights a clear trade-
off between test accuracy and training time. While increasing
T and decreasing 7 can improve test accuracy, these come
at the cost of longer training times. The optimal region
for balancing accuracy and efficiency appears to lie around
T € [2,4] and 7 € [0.1,0.25], where test accuracy is maxi-
mized without excessive computational overhead.

5 Related Works

Message-passing-based GNNs. The foundational ap-
proaches in graph neural networks, such as GCN [Kipf and
Welling, 20161, GAT [Veli¢kovi¢ et al., 2018], GIN [Xu et
al., 2018], and GraphSAGE [Hamilton er al., 20171, rely
on message-passing mechanisms. GCN use a spectral per-
spective to propagate information by applying convolutional
filters on graph Laplacians. GAT enhance the flexibility of
neighborhood aggregation by introducing attention mecha-
nisms (limited to local neighborhoods) to assign importance
to neighboring nodes. GIN address the expressiveness of
GNNs by ensuring injectivity in aggregation functions.
GraphSAGE combines information from a neighbors using

functions like mean, pooling, or LSTM, enabling the model
to capture more powerful local graph structures. However,
their reliance on neighborhood aggregation leads to over-
smoothing when multiple layers are stacked, rendering node
representations indistinguishable.

Hierarchical pooling-based GNNs. Hierarchical pooling
methods aim to capture both local and global information by
iteratively coarsening the graph. DiffPool [Ying et al., 2018]
uses learned soft cluster assignments to aggregate node fea-
tures into hierarchies, enabling multi-scale graph representa-
tions.

Transformer-based GNNs. GraphTransformer [Dwivedi
and Bresson, 20201, SAN [Kreuzer et al., 2021] and
Graphormer [Ying er al., 2021; Shi et al., 2022] build upon
the Transformer architecture by incorporating structural en-
codings to model graph-structured data. Unlike GAT, it lever-
ages the advantages of the Transformer’s global receptive
field by encoding the local positional information of nodes,
enabling the model to learn both local and global structures.
Recently, hybrid method such as GraphGPS [Rampasek ez al.,
2022] has emerged, which combines message-passing mech-
anisms and Transformers to learn both local and global infor-
mation.

Contrastive learning-based GNNs. Contrastive learning
methods have gained significant traction for unsupervised and
self-supervised graph representation learning. GraphCL [You
et al., 2020] generates augmented views of graphs using
operations like node dropping, edge perturbation, and sub-
graph sampling. AutoGCL [Yin et al., 2022] improves upon
GraphCL by introducing learnable view generators, allowing
the model to adapt node-level augmentation policies to spe-
cific datasets dynamically. InfoGraph [Sun ez al., 2019] max-
imizes the mutual information between graph-level represen-
tations and their substructures, such as nodes and edges, to
capture hierarchical dependencies.

Reaction-diffusion in GNNs. GREAD [Choi et al., 2023]
introduces a approach to graph representation learning by
leveraging reaction-diffusion equations. Specifically, it uti-
lizes Turing patterns [Turing, 1990] to capture long-range
structure and local structure within both heterophilic and ho-
mophilic graphs.

6 Concluding Remarks and Future Work

In this work, we propose a novel Blend-GNN that effectively
balances local and global information at both the node and
graph-level. By initializing node representations through a
diffusion-dominated global encoding, our Blend-GNN en-
sures stability and coherence, allowing the model to fo-
cus on refining localized patterns while effectively blending
both local and global contexts. Experimental results show
that Blend-GNN achieves significant improvements across
diverse graph domains and prediction tasks. Exploring the in-
tegration of multimodal data, such as combining graph with
text, images, could further enhance Blend-GNN’s applicabil-
ity to real-world scenarios. In the future, we aim to develop
method that enable the model to effectively leverage comple-
mentary information across modalities.
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