Crowd Counting Using

Diffusion-Based Latent Space
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Figure 1. Latent Diffusion Models, which form the basis of our model. Figure 2. The output of our model when given an
RGB image input. Green dots are marked on the part o o o
where the human head is recognized. Comparison with Other Service
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Pixel Space Diffusion Models are a type of probablisitic models that are
Latent Space specifically designed to learn the data distribution p(x) by .
EE - L — iteratively denoising a normally distributed variable. This Evaluatlon
Conditioning denoising process can be seen as learning the reverse process
Image Encoder of a fixed Markov Chain of length T. Conditional distributions of . . 1 -
_n the form p(z|y) can be achieved by implementing a conditional ShanghaiTech A | ShanghaiTech B MAE = = N ‘C’ — C. | (3)
denoising autoencoder with €4(z;,t,y), where z, is a noisy Method N 1=1 l l
c°ndm°mng version of z. With the incorporation of conditional information, MAE RMSE MAE RMSE
diffusion models can generate samples that align with the
o1 =4 o desired characteristics specified by the input y. A crowd map x € Zhang etal. m M 32.0 49.8 1 N ~ 2
oy _ FeatureMap - Diffusion — R1X1x256%256 js encoded and downsampled by a factor of 4 by Marsden et al. 126.5 | 1735 | 23.8 33.1 RMSE = |[— Zi—l ‘ C; — C;| @
RS A E(x) into a vector-quantization-regularized latent representation N -
Encoder ' . 7 = g(x)’ where 7z € R1X1X64X64. On the other hand, RGB Image MCNN 110.2 173.2 26.4 41.3
— y Concatenation y is mapped into { € R1X3%X64x64 Ky 3 domain-specific encoder Cascaded-MTL 101.3 152.4 20.0 31.1 H "
T(y) that adjusts the dimensions. These representations are - AL , — Z Z
- then channel-wise concatenated and further mapped to the SWItChmg CNN 90.4 135.0 21.6 33.4 Cl h=0 w=0 xh;W (5)
Cowap X Z=éelo) intermediate layers of the U-Net via a cross-attention layer. ours 181.1 262.2 70.9 08.8
Based on crowd map-RGB image pairs, we then learn our : : : :
e B enoicing LNt LDMs(Latent Diffusion Models) via Eq. 1. where & is optimized. Table 1. Estimation errors on ShanghaiTech Part-A and ShanghaiTech Part-B MAE in Eqg. 3. is a metric that quantifies the average
. 2 dataset. We evaluated the performance of our method on publicly available crowd- magnitude of errors. RMSE in Eq. 4., on the other hand, is
Decoder T Lipm = Ee),y.e~v(o,1)t “lE — €0 (Zt' t'T(Y))Hzl (1) counting datasets, and compared it with earlier methods. The results indicate that a metric that capture the square root of the average of
i Zr4 I"IIIIII i , o our method achieves highest metrics (Excluding the underlined), which is not squared errors. N is the number of images in one test
) i We can predict the distribution p and z, from the forward desirable compared to the earlier methods. This demonstrates that out method sequence and C; is the ground truth of counting. In Eq. 5.,
€o diffusion process q based on the current step z, It is specified as does not meet the standards of state-of-the-art performance. However, while the H and W show the height and width of the crowd map
A LO|ZE B HAY £ UAEE TS (z,) = (z )H (Zy_1|2¢, 20 (24, t) (2) reconstruction capability of LDMs may have limitations for tasks requiring precise respectively while xj,, is the pixel at (h, w) of the
Seine pizo fp ! =14(Ze-1l20, 29 (2, 1)) accuracy in pixel space, such as crowd counting, our results offer fresh evidence of generated crowd map. The above equations are
Then, the Decoder D reconstructs the crowd map % from the potential benefits of utilizing Diffusion Models and Latent Space for location- evaluation metrics commonly used to evaluate the
Figure 3 Our mode|'s architecture demonstrates the training proceSS. We Condition the |atent Space’ g|V|ng 5(‘ = @(ZO) = @(g(x)) baS.ed CI‘OWd .Counting. Add|t|0na”y, due to the na:ture Of difoSion mOde|S, they performance Of CrOWd Counting mOdels. They genera”y
the model via channel-wise concatenation. typically require large amounts of data, and if trained in a more powerful GPU indicate that smaller values represent superior models.
environment, one can expect improved generalization performance.
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Figure 4. This diagram shows how an RGB image input is used to estimate the number of individuals. Feature maps(zr, z;_4, ..., Z9) are obtained by
performing 500 sampling steps using DDIM (Differentiable Diffusion Models), followed by the generation of a crowd map through contour detection.
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N N N Each of them shows the results in high-angle, low-angle, peculiar shape, and indoor scene.
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