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Abstract

Large language models (LLMs) have demon-
strated strong performance across a wide range
of NLP tasks, yet their effectiveness remains
highly sensitive to prompt design. To ad-
dress this issue, automated prompt optimiza-
tion (APO) has emerged as a promising di-
rection. Existing APO approaches typically
refine prompts using natural language feed-
back, but each step often relies on a single per-
spective. This narrow focus biases the base
LLM towards one viewpoint, leading to over-
fitting and inefficiency in both the step-by-
step reasoning process and the overall search
procedure, thereby increasing computational
cost. In this paper, we propose ProtoPrompt,
a novel method that integrates Monte Carlo
tree search (MCTS) with a prototypical feed-
back mechanism. Our method enables the op-
timizer LLM to generate diverse perspectives
and identify the most representative feedback.
This mechanism provides the base LLM with
richer and more balanced guidance throughout
the search trajectory. Experiments on six BIG-
Bench tasks and three general natural language
understanding (NLU) benchmarks show that
ProtoPrompt achieves up to a 1.64% improve-
ment over strong baselines, converges faster
with fewer iterations, and reduces overall cost
by 18.19%. Our code is publicly available
at https://example.com.

1 Introduction

Large language models (LLMs) have rapidly ad-
vanced the state of the art in a wide spectrum of
natural language processing (NLP) tasks, ranging
from common sense reasoning and question an-
swering to instruction following and step-by-step
problem solving (Brown et al., 2020; OpenAl et al.,
2023; Sahoo et al., 2024). Their ability to general-
ize from in-context examples and natural language
instructions has driven widespread adoption in both
academic and industrial applications (Lampinen

et al., 2025; Bubeck et al., 2023; Wei et al., 2022;
Ouyang et al., 2022). However, despite these suc-
cesses, the performance of LLMs remains highly
sensitive to prompt engineering (Sahoo et al., 2024;
Cao et al., 2024; Wei et al., 2022; Chen et al., 2023;
Zamfirescu-Pereira et al., 2023). Even small vari-
ations in prompt wording, structure, or exemplars
can yield large differences in accuracy, reasoning
quality, and robustness (Wei et al., 2022; Fernando
et al., 2024; Zhao et al., 2021). Consequently, effec-
tive prompt engineering has emerged as a crucial
yet challenging component of the deployment of
LLMs at scale (Sahoo et al., 2024).

Traditional prompt engineering often relies on
manual trial-and-error and human expert intu-
ition, which are costly, inconsistent, and diffi-
cult to scale (Fernando et al., 2024). To reduce
dependence on human-crafted prompts, recent
approaches have therefore turned to automated
prompt optimization (APO) (Pryzant et al., 2023;
Shin et al., 2023), where prompts are iteratively
improved without relying on human-crafted exem-
plars using LLMs. Based on natural language feed-
back, these methods have made important progress
by enabling prompts to dynamically adapt across
tasks and domains (Wang et al., 2023b; Madaan
et al., 2023). However, they remain vulnerable
to instability: Optimization often amplifies the
noisy or misleading context, causing the result-
ing prompts to inherit narrow biases or overfit to
a specific feedback set (Chu et al., 2024). Con-
sequently, such search processes require a large
number of trials, increasing the computational cost
and exploration burden of identifying effective
prompts. (Ramnath et al., 2025)

Addressing this challenge requires a new per-
spective on how feedback itself is represented and
used. Instead of treating feedback as a single cor-
rection or exemplar, it can be viewed as a dis-
tribution of plausible perspectives (Saba, 2023;
Wang et al., 2023a). Identifying the feedback that


https://example.com

lies closest to the semantic center of this distri-
bution (Elekes et al., 2017; Saba, 2023), we can
exploit the feedback that is maximally representa-
tive while limiting the misleading or overly specific
ones. This approach reduces the risk of propagat-
ing noisy information and, critically, reduces the
number of unproductive exploration paths during
optimization. In this way, editing feedback be-
comes a principled mechanism for stabilizing the
search process and ensuring that prompts evolve
based on feedback that are both informative and
generalizable.

Motivated by this, we propose ProtoPrompt, an
APO-based method that introduces prototypical
feedback (PF) as a core mechanism. The key in-
sight is that unreliable optimization stems from
treating any single feedback—whether overly spe-
cific, noisy, or biased—as equally valid guidance,
consistent with prior observations that noisy signals
can degrade the quality of optimized prompts (Li
et al., 2023). This information, when propagated
through iterative search, can easily lead to spurious
exploration paths and increased search cost. To
address this, ProtoPrompt reframes the feedback
as a distribution of plausible corrections derived
from the errors of the base model. In practice, the
optimizer LLM generates a diverse set of feedback
candidates, each reflecting a distinct perspective
on the observed error from the base LLM. These
candidates are then embedded into a dense vector
space, forming a semantic distribution of poten-
tial corrections. Within this space, ProtoPrompt
computes a centrality to identify the feedback that
lies closest to the semantic center. The selected
prototype functions as the most representative cor-
rection: It retains essential task-relevant semantics
while filtering out misleading or overly narrow de-
tails.

We validate ProtoPrompt on a diverse set of
benchmarks spanning structured reasoning tasks
(e.g., tabular inference, geometric recognition, tem-
poral and causal reasoning) (Suzgun et al., 2023;
Srivastava et al., 2023) and general NLU bench-
marks (Pang and Lee, 2004; Voorhees and Tice,
2000; De Marneffe et al., 2019) (e.g., subjectivity
classification, question classification, and natural
language inference). The results show that Pro-
toPrompt achieves performance improvements in
several tasks, while also reducing the cost of explo-
ration.

Our contributions are as follows:

* We identify that feedback-based prompt opti-
mization can be undermined by misleading or
noisy feedback, which propagates errors dur-
ing search and leads to inefficient exploration.

* We propose a novel method, ProtoPrompt,
that introduces prototypical feedback (PF) as
a mechanism for the most representative feed-
back from a distribution of feedback candi-
dates.

* Through extensive experiments on various
tasks, we show that ProtoPrompt delivers per-
formance improvements while reducing cost,
demonstrating both the effectiveness and effi-
ciency of PF in guiding prompt optimization.

2 Related Work

Chain-of-thought. Chain-of-thought  (CoT)
prompting (Wei et al., 2022; Kojima et al., 2022)
has emerged as a widely used technique to
improve the reasoning capabilities of LLMs by
decomposing complex problems into a sequence
of intermediate steps. This structured reasoning
process has proven effective in a variety of tasks,
including arithmetic, logic, and commonsense
inference. ALthough CoT prompting improves
interpretability and multi-hop reasoning, recent
studies highlight its vulnerability to overfit-
ting (Saba, 2023; Chu et al., 2024), as LLMs tend
to latch onto spurious patterns or overly specific
details present in intermediate steps. Such an
over-reliance can lead to degraded performance
when the CoT trace includes noisy or biased
content. Furthermore, human-crafted static CoT
exemplars limit their flexibility and adaptability
across tasks and model variants. Our work
builds on these insights by aiming to generalize
intermediate reasoning steps to prevent such
overfitting and improve the robustness of CoT-style
prompting methods.

Automated prompt optimization. Prompt de-
sign has long been recognized as a critical determi-
nant of LLM performance. Since manual prompt
engineering is costly and error-prone, recent re-
search has focused on automated prompt optimiza-
tion. Automatic prompt engineering (APE) (Zhou
et al., 2022) demonstrated that LLMs could be
used to iteratively paraphrase instructions, score
them against a validation set, and retain higher
performing variants. Building on this direction,
OPRO (Yang et al., 2023) conceptualizes LLMs



themselves as prompt optimizers. OPRO iteratively
generates candidate prompts using an optimizer
LLM and scores them using a scorer LLM in a
black-box loop, similar to evolutionary optimiza-
tion. UniPrompt extends the optimization prob-
lem to a multi-task setting. By decomposing the
prompts into multiple sections and editing them in
a structured way, UniPrompt (Juneja et al., 2025)
demonstrates improved performance and general-
ization between tasks. In our study, we extend this
iterative process by encouraging the optimizer to
consider multiple diverse feedback candidates and
then to score them to exploit the most representa-
tive.

Planning-based prompt optimization. Promp-
tAgent (Wang et al., 2023b) reframes prompt opti-
mization as a strategic planning problem. Instead
of greedy iteration, PromptAgent employs Monte
Carlo tree search (MCTS) to explore the vast space
of candidate prompts. Similarly to other recent ap-
proaches, the design separates the roles of two mod-
els: a base LLM, whose performance is optimized,
and an optimizer LLM, which identifies errors and
generates corrective feedback. The optimization
loop proceeds as follows. First, the base model is
evaluated on a validation set. When the base LLM
makes an error, the optimizer LLM identifies the
mistake and generates natural language feedback
that highlights missing constraints, misinterpreta-
tions, or inadequate reasoning strategies. Feedback
is treated as an action in the MCTS framework,
leading to new updated prompts (states). Each new
prompt is reevaluated in the task, and the resulting
reward is backpropagated through the search tree.
However, a limitation of this approach is that the
feedback generated for each action can be highly
diverse and random, meaning that even misleading
or incorrect feedback may be propagated as reward
during search. In our work, we retain the strengths
of MCTS-based strategic exploration, while miti-
gating this weakness by searching through a diverse
distribution of feedback candidates and selecting
the most representative feedback to guide the sub-
sequent search.

3 Motivating Example

To motivate the prototypical feedback (PF) mecha-
nism, we first examine how different forms of feed-
back influence reasoning performance (Figure 1).
In a CoT setting, the model relies on a single ex-
emplar to guide its reasoning. When providing
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Figure 1: Motivating example comparing feedback
strategies. PF represents prototypical feedback that pro-
vides generalized, representative guidance.

an exemplar which encodes highly concrete cues,
such as domain-specific lexical patterns and ex-
act symbolic templates, the model achieves strong
performance. However, this success is largely at-
tributable to exploiting surface correlations rather
than cultivating genuine reasoning ability.

When we manually replace concrete exemplars
with more generalized ones that capture only the
essential structure of the task (CoT w/PF), we ob-
serve improved performance on Geometry, Causal
Judgment (Causal), and TREC, but performance
degradation on Object Counting. This highlights a
fundamental trade-off: while generalizing informa-
tion can aid task performance, certain tasks benefit
more from specific cues. However, manually con-
structing prompts to strike this balance is extremely
difficult. Therefore, we investigate how PF influ-
ences when incorporated with strategic planning
methods such as MCTS.

When prompts are automatically searched using
MCTS, performance improvements are generally
observed; however, in certain cases such as Causal,
the performance can even degrade. In contrast,
applying PF consistently achieves the highest per-
formance across all tasks, while in some cases like
CoT w/ PF the gains may be less pronounced. This
strong synergistic effect provides the motivation
for employing PF in our framework.

4 Methodology

4.1 Overview

Our proposed method, ProtoPrompt, is illustrated
in Figure 2. ProtoPrompt is designed for auto-
mated prompt optimization and operates within an
MCTS-based planning framework that addresses
the underlying search problem. The system con-
sists of two interacting models with distinct roles:
a base LLM, which performs reasoning given an
input prompt, and an optimizer LLM, which identi-
fies errors in the base LLLM’s outputs and provides
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Figure 2: Overall framework of ProtoPrompt. The process begins with a search space of candidate prompts, which
are iteratively expanded through MCTS. At each state, the base LLM (GPT-40-mini) generates task outputs, and an
optimizer LLM (GPT-4-turbo) provides multiple feedback candidates. These feedback candidates are embedded
into dense vector space, and the prototypical feedback reflecting high centrality across candidates is selected to
update the prompt. The updated prompt forms a new state in the search tree, where its quality is evaluated via
reward signals. Through repeated selection, expansion, simulation, and backpropagation, MCTS identifies prompts

that maximize performance with efficient exploration.

corrective feedback.

The optimizer LLM aims to deliver general and
representative feedback, avoiding solutions that are
overly specific to a single instance. To achieve this,
before providing feedback, it generates a diverse
set of unique feedback candidates, each capturing a
different perspective on the identified error. These
candidates collectively approximate the broad dis-
tribution of plausible corrections derivable from
the base LLM’s error.

Each candidate, expressed in natural language, is
mapped into a dense vector space using a language
embedding model. Within this space, we compute
an inner product-based centrality score to locate
the feedback that lies closest to the semantic center
of the candidate distribution. The selected feedback
thus represents the most prototypical correction:
it is maximally representative of the distribution,
while being robust against noisy, overly specific
details or spurious biases. This feedback is then
used to optimize the prompt, which yields a new
state in the MCTS search process.

4.2 Problem Definition

We consider a base language model O tasked with
solving the questions ¢ € Q. A prompt s condi-
tions the model output, that is, y = O(q|s). The
objective of prompt optimization is to discover an

improved prompt s* that maximizes expected task
performance:
s" = argmax B, o[R(O(qls))], (1)
seS
where R denotes the reward function, typically
accuracy, F1, or task-specific evaluation metrics.

4.3 MCTS-based Strategic Planning

We exploit MCTS as the backbone of our optimiza-
tion framework. Each node in the search tree repre-
sents a prompt state, and the edges correspond to
feedback-guided modifications (action). The objec-
tive is to identify high-reward paths that converge
toward expert-level prompts. Formally, the search
tree is defined as T = (S, .A), where each state
s € S corresponds to a candidate prompt, and each
action a € A corresponds to a feedback-driven
modification. At iteration ¢, the algorithm excutes
four canonical steps.

Selection. Starting from the root node sq, the al-
gorithm recursively selects the child nodes accord-
ing to the upper confidence bound applied to trees
(UCT) algorithm (Kocsis and Szepesvari, 2006):

a* = argmax |Q(s,a) + c-
a

(@)



where (s, a) denotes the average reward of action
a from state s, N (s) is the number of visits to state
s, N (s, a) is the number of times action a has been
taken, and ¢ > 0 is a constant of tunable explo-
ration. This balances exploitation of high-reward
actions with exploration of less-visited braches.

Expansion. When a leaf node s;, with unvisited
action is reached, we expand the tree by generat-
ing a new state. In our work, this process involves
the optimizer LLM performing the action of gener-
ating prototypical feedback and subsequently cre-
ating a new prompt based on it, as described in
Sections 4.4 and 4.5.

Simulation (Rollout). From the expanded state,
we evaluate the updated prompt on a validation
subset Dy, The base LLM O produces outputs
conditioned on the candidate prompt, and a reward
is computed as:

1
R(s) = Do (E:) {O(qls) =y}, 3
q,Y

for classification tasks, or extended to task-specific
metrics. This reward serves as a stochastic estimate
of the value of the prompt.

Backpropagation. Finally, the reward obtained
during the simulation is propagated backward
along the path from the leaf node to the root. Each
visited node updates its statistics:

Q(s,a) - N(s,a)+ R
N(s,a) +1 ’

Q(s,a) « “)

N(s,a) < N(s,a) + 1. 3)

This process incrementally refines the value esti-
mates for state-action pairs, allowing the tree to pro-
gressively focus search on high-reward prompts.

4.4 Multi-Perspective Feedback
Augmentation

A key challenge in prompt optimization lies in the
fact that the base LLM’s error can often be ex-
plained from multiple plausible perspectives, each
focusing on distinct deficiencies such as factual
correctness, depth of reasoning, or linguistic clar-
ity. Instead of constraining the optimization loop
to a single feedback trajectory, we explicitly model
feedback generation as a distributional process.

Algorithm 1 Prototypical Feedback Selection

Require: Prompt template: 7, Optimizer LLM:
', Text embedding model: g
Generate (f,C) <+ O'(T)
F—o
for i < 1tomdo
for all ¢;, € C; do
f <+ replace [M ASK;] with ¢,
F+—FUf
end for
end for
Compute E + ¢g(F)
Compute I(f) = > pcpler ef)
: fp < argmaxscp I(f)
: return f,

D AR AN > s

—_ = =

Formally, given an erroneous output y from O un-
der prompt s, we condition an optimizer LLM O’
on (s,y) and obtain a feedback distribution.

F ~P(F|s5,y,0), (6)

where F' = fi1, fo, ..., fr denotes a set of feedback
candidates. Each f; represents a distinct hypothesis
about how the prompt should be refined.

From a Bayesian perspective, F can be viewed
as sampling from a posterior predictive distribu-
tion:

P(fls,y) <Pyl f,s)P(f|s), (D

where P(f | s) encodes the prior plausibility of a
feedback statement given the prompt context, and
P(y | f,s) reflects the likelihood that the feedback
explains the observed error y. By approximating
this posterior with multiple feedback fi, ..., fi, we
temporarily expand the search space to include di-
verse yet task-relevant information.

It is done using a specialized prompt template 7,
which incorporates the prompt s (See Appendix F).
Specifically, this template guides the optimizer
LLM O’ to generate initial feedback f and to iden-
tify exactly m segments within f. Each identified
segment is then replaced with a unique placeholder
token, denoted as [MASK;] fori = 1,...,m, and
for each mask token, the model generates &k unique
alternative candidates ¢y, co, -+ , ¢} C C;.

4.5 Prototypical Feedback Selection

After the diversification process, the centrality se-
lection strategy is used to determine the most gen-
eral and representative feedback. Let each feed-
back f replaced by ¢ be assigned to a dense vector



embedding ey € R? by a text embedding model
g : F — RZ The similarity between two feedback
candidates f and f’ is quantified by the inner prod-
uct (ey, es). We then define a score I( f) for each
candidate as the following equation:

I(f) =" (es.ep). (8)

fleF

In practice, we compute the embedding matrix
E ¢ R¥¥4 where each row corresponds to an
embedding ey, and then obtain I( f) by adding the
rows of the matrix product EE . Feedback can-
didates are ranked according to their scores, and
we select the top-1 index as the most representa-
tive feedback f,, marginalizing the others. This
centrality score I(f) reflects the degree to which
a given feedback candidate represents the overall
set in the embedding space. Since semantically
similar candidates concentrate around high-density
regions of p(f | x), the score I( f) naturally favors
those near the centroid of the embedding distribu-
tion (Elekes et al., 2017; Saba, 2023; Fodor and
Pylyshyn, 1988). For further details, we provide
the Algorithm 1.

Finally, we generate the optimized prompt,
which serves as the next node in the MCTS search
trajectory for subsequent exploration using O and
the selected f),.

5 Experiments

5.1 Set-up

Datasets. Datasets are used to evaluate the ef-
fectiveness of prompt optimization in various rea-
soning and classification tasks from a subset of
challenging BIG-Bench Hard (BBH) tasks (Suz-
gun et al., 2023; Srivastava et al., 2023) (Penguins
in a table, Geometry, Epistemic Reasoning, Ob-
ject Counting, Temporal Sequences, and Causal
Judgment) and general natural language under-
standing (NLU) tasks, i.e., Subjective (Pang and
Lee, 2004), TREC (Voorhees and Tice, 2000), and
CB (De Marneffe et al., 2019). Each dataset is di-
vided into training, validation, and test sets. A more
detailed description is reported in the Appendix C.

Implementation details. In the experiment, we
use the same evaluation strategy as PromptAgent.
We adopt GPT-40-mini as the base LLM O, GPT-4-
turbo as the optimizer LLM (', and the text embed-
ding model g as text-embedding-3-1large from
OpenAl. In all experiments, we set m to 2 and k to

50 for the purpose of computational efficiency. We
set the temperature to 0.0 for the base LLM and
1.0 for the optimizer LLM. We set the number of
iterations for MCTS to 12, adding 3 children of the
leaf node to the tree, the maximum depth to 8, the
minimum depth to 2, and the exploration weight to
2.5 for UCT Algorithm. We select the test accuracy
based on the node with the highest reward, which
is calculated on Dyy.

Baselines. For baseline comparisons, we con-
sider both human-crafted and APO techniques. The
human prompt (ZS) and the few-shot version of the
human prompt (FS) (Suzgun et al., 2023) base-
lines provide a reference for manually designed
prompts, while CoT and the zero-shot version of
CoT (ZS) (Wei et al., 2022; Kojima et al., 2022)
serve as strong reasoning-based baselines. Mean-
while, we compare our method against strong base-
lines including OPRO (Yang et al., 2023), Promp-
tAgent (Wang et al., 2023b), UniPrompt (Juneja
et al., 2025).

5.2 Performance Analysis

Table 1 compares the proposed method with sev-
eral baselines, including human baselines, CoT
baselines, OPRO, PromptAgent, and UniPrompt,
in both BBH and general NLU tasks. On the
six BBH tasks, ProtoPrompt achieves the best re-
sults on three tasks and the second-best on two,
with an overall average accuracy of 89.46%. This
corresponds to a gain of +1.65 percentage points
over the strongest baseline, UniPrompt (87.81%).
On the three general NLU benchmarks, Proto-
Prompt achieves the best result on one task and the
second-best on the remaining two, resulting in the
second-highest average. When evaluated across all
tasks, including both human-crafted prompts and
APO methods, ProtoPrompt achieves the highest
overall average of 87.21%, surpassing UniPrompt
(86.61%) by +0.6 percentage points. In addition,
compared to PromptAgent, which also employs
MCTS-based prompt optimization, ProtoPrompt
achieves a further improvement of +1.65% on aver-
age. These consistent gains across heterogeneous
benchmarks provide strong evidence that PF en-
hances both task-specific reasoning and language
understanding capabilities in LLMs.

5.3 Ablation Study

Effect on accuracy. Table 2 shows that the in-
corporation of Prototypical Feedback (PF) consis-



Method BIG-Bench Hard tasks General NLU tasks Avg.
Penguins Geometry Epistemic Object Count Temporal Causal Judge Avg. Subj TREC CB Avg.
Human (ZS) 98.73 48.00 84.40 78.80 91.00 64.00 7749 66.80 65.60 80.36 70.92 75.30
Human (FS) 97.47 41.50 80.60 49.40 93.40 58.00 70.06 8530 7520 8571 82.07 74.06
CoT (ZS) 97.47 55.50 82.00 93.20 90.80 65.00 80.66 67.80 6500 87.50 73.43 7825
CoT 97.47 69.50 87.40 93.80 96.80 66.00 85.16 79.60 77.40 8571 80.90 83.74
OPRO 100.00 83.36 82.15 88.23 97.93 66.94 86.44 7342 80.62 7440 76.15 83.01
PromptAgent 98.73 77.50 89.20 94.80 99.60 67.00 87.81 7390 8540 82.14 80.48 8536
UniPrompt 100.00  78.90 81.75 93.50 99.44 69.89 87.11 88.19 8234 86.28 85.60 86.61
ProtoPrompt (Ours) ~ 98.73 85.00 89.20 96.20 98.60 69.00 89.46 80.00 86.00 82.14 8271 87.21
Table 1: Comparison across BBH tasks and General NLU tasks. Test accuracy (%) is reported.
1.0 Dataset Accuracy 1 (%) Total cost | ($)
w/o PF w/ PF w/o PF w/ PF
BBH 87.81  89.46 (+1.65) 50.22  40.00 (-20.34%)
NLU 40.24 4136 (+1.12) 1945  17.00 (-12.59%)
3 0.8 Total 8536 87.21 (+1.85) 69.67 57.00 (-18.19%)
@©
3
2 Table 2: Comparison of performance and inference cost
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Figure 3: Convergence analysis of different methods
based on tree depth in the task of Object Counting.
Shaded regions indicate the variance.

tently improves task performance in both BBH and
general NLU tasks. In BBH tasks, average ac-
curacy increases from 87.81% to 89.46% (+1.65
points). Similarly, the results on general NLU show
an improvement from 40.24% to 41.36% (+1.12
points). In particular, the aggregated accuracy be-
tween datasets increases by +1.85 points, under-
scoring the robustness of PF as a feedback mecha-
nism to improve the quality of optimization.

Effect on inference cost. In addition to accu-
racy improvements, PF achieves notable reductions
in inference cost. Without PF, the total cost of
inference in all tasks amounts to $69.67, while
the PF-enhanced approach lowers this to $57.00,
corresponding to an 18.19% reduction. This cost
efficiency arises from the ability of the PF to com-
press feedback information into more concise and
representative prompts, which reduces redundant
exploration and search iterations. As a result, PF
not only strengthens performance, but also saves
cost.

between our method without prototypical feedback (w/o
PF) and with prototypical feedback (w/ PF).

5.4 Convergence Analysis

Figure 3 shows the performance trends in vary-
ing tree depths for Human, CoT, ours without PF
(w/o PF), and ours with PF (w/ PF) in the task
of Object Counting. The trajectories illustrate the
evolution of average performance during the train-
ing (reward) and testing steps. As tree depth in-
creases, our model consistently outperforms the
base model, demonstrating superior generalization
by effectively narrowing the gap between training
and testing performance. Notably, ours not only
achieves higher performance after full exploration,
but also shows a better result over Human and CoT
even at earlier depths.

5.5 Prompt Generalization Analysis

To assess the transferability of the prompts between
the base LLMs, we evaluate whether the optimized
prompts in GPT-40-mini retain their effectiveness
when applied to another base LLM, GPT-03-mini
in Table 3. In particular, we observe that the opti-
mized prompts maintain high performance in most
tasks even when transferred to GPT-03-mini. While
other methods tend to degrade on the Causal Judge
benchmark, our method exhibits improved perfor-
mance. This indicates that generalized feedback
not only enhances performance, but also yields
prompts that are robust to model shifts, highlight-
ing the practical utility of our method.



Task GPT-40-mini (source) GPT-03 mini (target)
PromptAgent UniPrompt Ours PromptAgent UniPrompt Ours
Penguins 98.73 100.00 98.73 100.00 100.00 98.73
Geometry 77.50 78.90 85.00 97.50 93.50 98.50
Epistemic 89.20 81.75 89.20 88.40 87.20 92.60
Object Count 94.80 93.50 96.20 99.40 99.40 99.60
Temporal 99.60 99.44 98.60 99.60 99.20 99.20
Causal Judge 67.00 69.89 69.00 65.00 67.00 70.00
Subj 73.90 89.19 80.00 74.60 89.70 79.50
TREC 85.40 82.34 86.00 85.00 77.00 87.80
CB 82.14 86.28 82.14 85.71 89.28 87.50
Avg. 85.36 86.61 87.21 88.36 89.14 90.38

Table 3: Prompt generalization performance. Prompts optimized by GPT-40-mini demonstrate effective transfer to

other stronger LLM GPT-03-mini.

Task #Tokens

Human w/oPF w/ PF
Penguins 12 177 (+165) 12 (0)
Geometry 8 478 (+470) 62 (+54)
Epistemic 8 89 (+81) 50 (+42)
Object Count 17 476 (+459) 228 (+211)
Temporal 11 126 (+115) 169 (+158)
Causal Judge 6 481 (+475) 137 (+131)
Subj 14 265 (+251) 149 (+135)
TREC 50 490 (+440) 447 (+397)
CB 31 31 (0) 31 (0)

Table 4: Comparison of the final prompt length (#To-
kens) optimized by different methods across tasks. We
report human prompts (Human), prompts optimized
without prototypical feedback (w/o PF), and with proto-
typical feedback (w/ PF). The numbers in parentheses
indicate the difference in token count relative to Human.

5.6 Final Prompt Analysis

Table 4 reports the number of tokens in the final op-
timized prompts for different tasks. Human-written
prompts are generally short and concise, serving as
a baseline reference. When optimization is con-
ducted without prototypical feedback (w/o PF),
the resulting prompts become significantly longer
than the human baseline, often exceeding by more
than +400 tokens. This indicates that conventional
optimization tends to rely on excessively verbose
prompts to capture task-relevant information. In
contrast, our method (w/ PF) consistently produces
more compact prompts while maintaining effec-
tiveness. These results demonstrate that PF enables

the optimization process to distill essential task se-
mantics into shorter prompts, thereby mitigating
redundancy and improving efficiency.

6 Concluding Remarks

In this work, we investigate the challenge of
feedback-driven prompt optimization, highlight-
ing that misleading feedback can propagate errors,
inflate the cost of the exploration, and undermine
the stability of search. To address this, we pro-
pose ProtoPrompt, a framework that introduces
prototypical feedback (PF) as a principal mecha-
nism for selecting representative corrections from
diverse candidates. By anchoring optimization to
feedback that captures the semantic core of task re-
quirements, ProtoPrompt mitigates spurious search
paths and provides a more stable basis for iterative
improvement. Our experimental evaluation demon-
strated that ProtoPrompt yields performance im-
provements while requiring fewer trials, validating
both the effectiveness and efficiency of PF. These
results suggest that robust feedback selection is a
key ingredient in the advancement of automated
prompt optimization and the assurance that LLM
reasoning remains accurate and generalizable.

Looking ahead, we envision PF as more than
a mechanism for stabilizing prompt optimization.
Since PF encapsulates the most representative sig-
nal from a wide distribution of feedback, it serves
as a compact yet rich information. This property
opens avenues for storing and reusing PF in tasks,
enabling efficient memory usage and knowledge
transfer. We anticipate that PF could form the basis
for a foundation in diverse applications.



Limitations

Although effective in the general tasks tested, its
performance in specialized domains could be still
uncertain and may rather decrease. Moreover, our
method can be computationally intensive, espe-
cially with many candidates. Furthermore, the
use of another pre-trained model and additional
algorithms raises concerns about increased com-
putational costs. Our future work will focus on
balancing generalization with the domain-specific
details required in complex reasoning scenarios.

Ethical Considerations

We follow fundamental ethical principles to ensure
responsible use of datasets while minimizing po-
tential social harms. All datasets are sourced from
publicly available materials and used in accordance
with applicable privacy and copyright regulations.
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2023, for GPT-4-turbo is December 2023, and the
text-embedding-3-small model was released in
January 2024. However, to ensure reproducibility,
we provide our source code and the datasets used
for public access, the data split details in Table 5,
exact input prompts in Table 6, 8, and 9, and the
templates in Table 7. In addition, we manually set
the seeds to 42.

B Computing Environment and License

All experiments were conducted on Ubuntu
22.10, with an Intel(R) Xeon(R) Gold 6326 CPU
(2.90GHz) and NVIDIA A100 GPUs (80GB).
The source code for this paper is adapted from
PromptAgent (Wang et al., 2023b) (licensed under
Apache-2.0).

C Dataset Description

We use six tasks from Big-Bench? (Srivastava et al.,
2023), and three common NLU tasks. The descrip-
tion of each task is reported in Table 5.

Task Train Val. Test
Penguins in A Table 70 70 79

Geometry 150 150 200
Epistemic Reasoning 300 200 500
Object Counting 150 150 500
Temporal Sequences 150 150 500
Causal Judgement 90 90 100
Subjective 200 200 1000
TREC 200 200 500
CB 125 125 56

Table 5: The number of samples in the training, valida-
tion, and test data split.

Big-Bench tasks. The Penguins in A Table
task presents a structured reasoning challenge in
which the models must answer questions based
on a tabular representation of Penguin attributes.
Each row corresponds to an individual penguin,
and attributes such as age, height, and weight are
provided. It requires the model to extract relevant
information from the table, perform numerical rea-
soning.

The Geometry task tests the model’s ability to
recognize and classify geometric shapes based on
their scalable vector graphics (SVG) paths. It con-
tains a variety of simple and complex geometric

Shttps://github.com/google/BIG-bench.
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figures, and the task demands understanding of
how sequences of drawing commands correspond
to different shapes.

In the Epistemic Reasoning task, models must
determine whether a given premise entails a hy-
pothesis. It evaluates the model’s ability to rec-
ognize epistemic distinctions, such as differentiat-
ing between beliefs and factual statements. Some
statements involve indirect inferences or degrees of
uncertainty, making it necessary for the model to
reason beyond simple surface-level text matching.

The Object Counting task focuses on numer-
ical reasoning by presenting scenarios in which
objects are grouped or described in varying ways.
The challenge requires the model to correctly count
items while accounting for linguistic ambiguities,
such as plural forms, implicit quantities, and collec-
tively referenced objects. It is particularly useful
for assessing how well the models handle numeracy
and aggregation.

The Temporal Sequences task assesses the
model’s ability to understand and reason about
chronological events. Given a sequence of activi-
ties, the model must infer when a particular event
could have taken place. It involves constraints such
as available time slots, activity durations, and event
dependencies, which requires the model to accu-
rately track and manipulate time-based informa-
tion.

The Causal Judgment task evaluates the
model’s understanding of causal relationships.
Given a scenario, the model must determine
whether an event was a direct result of a preced-
ing action or simply correlated. It is particularly
challenging, as it requires distinguishing between
correlation and causation, as well as recognizing
implicit intentions behind actions.

General NLU. The Subjective* (Pang and Lee,
2004) consists of text classification examples in
which the model must determine whether a given
sentence is subjective or objective. Subjectivity is
typically marked by personal opinions, emotions,
or qualitative judgments, whereas objectivity is as-
sociated with factual statements. The challenge
involves correctly identifying linguistic cues that
signal subjective interpretation without being mis-
led by neutral descriptive language.

The TREC? task (Voorhees and Tice, 2000) is a
well-established question classification benchmark.

4https: //huggingface.co/datasets/SetFit/subj.
Shttps://huggingface.co/datasets/CogComp/trec.
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Given a natural language question, the model must
categorize it into one of several predefined types,
such as entity, abbreviation, location, or numeric
value. It tests the model’s ability to interpret the in-
tent behind a question and align it with a structured
taxonomy of possible responses.

The CB® task (De Marneffe et al., 2019) is de-
signed for natural language inference, requiring
models to determine whether a hypothesis is en-
tailed, contradicted, or neutral concerning a given
premise. It contains sentences with varying lev-
els of implicit meaning, requiring careful semantic
interpretation to distinguish between direct entail-
ment, contradiction, and unrelated statements.

D Computational Complexity

We analyze the computational complexity of Pro-
toPrompt, focusing on the training phase. Let N
denote the mini-batch size and M the complexity
of a single model inference. Let k denote the num-
ber of feedback candidates per masked segment m.
A prompt is optimized via search and evaluation
over training data. Its per-iteration complexity can
be approximated as O’ (N M + M). The term N M
corresponds to prompt evaluation over a batch of
training examples, and the additional M accounts
for the optimizer LLM O”’s generation.
ProtoPrompt first generates &k candidates, result-
ing in kM inference cost from (0’. Then, it embeds
all feedback candidates using an embedding model
and computes a centrality score for each candi-
date. This process involves O’ (k?) inner product
computations and an additional O’(k) for the final
selection via argmax, leading to the total complex-
ity O'(NM + M + kM + k* + k). While our
complexity scales with &, this dependency is minor
in practice because k < M the number of can-
didates is far smaller than the cost of full model
inference over a batch. Under this assumption, the
total complexity simplifies to O'((N + k)M).

E Human Prompts

We report the human prompts used in our experi-
ments in Table 6. These prompts serve as the base
input for prompt optimization, with additional task-
specific prompts covering task descriptions, ques-
tions, and answer formats incorporated for each
sample.

6h'ctps ://huggingface.co/datasets/aps/super_
glue.
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F Feedback Template

The exact template used to generate feedback is
reported in Table 7. We create the template con-
sidering the planning process with mini-batching.
This template facilitates a structured approach to
analyzing incorrect examples, identifying specific
segments, and generating semantic replacements.

G Final Prompts

We report the final optimized prompts, token usage,
and accuracy for each dataset used in our experi-
ments in Tables 10 to 18. Each table contrasts our
ProtoPrompt method (w/ PF) with its counterpart
without PF (w/o PF). Across datasets, our method
consistently achieves higher accuracy while requir-
ing fewer tokens.

H Details of Motivating Example

To ground the design of our prototypical feedback
(PF) mechanism, we examine how the form of feed-
back embedded in exemplars influences model rea-
soning. While CoT prompting has been shown to
elicit step-by-step reasoning, the nature of the ex-
emplars whether highly concrete or abstract can
substantially alter both performance and general-
ization.

Table 8 demonstrates a few-shot CoT prompt
where the exemplar includes explicit error identi-
fication (highlighted in red) and rigidly structured
reasoning cues (blue). This formulation enables
the model to achieve strong performance on object
counting tasks by leveraging surface-level heuris-
tics, such as filtering out words that are not fruits.
However, this success is fragile: the model tends to
memorize lexical cues like clarinet or violin rather
than developing robust symbolic reasoning. Prior
studies have noted that LLMs often rely on such
shallow correlations when presented with concrete
cues.

Table 9 introduces PF, where concrete lexical
references are replaced with generalized descrip-
tions (highlighted in yellow). Instead of enumer-
ating fixed categories, the exemplar instructs the
model to distinguish between relevant and irrele-
vant objects. This abstraction promotes better gen-
eralization across tasks by emphasizing structural
properties of the reasoning process. The approach
resonates with evidence from prototypical represen-
tation learning, where abstraction enhances trans-
ferability by capturing task-invariant features. Yet,
the object counting example reveals a limitation:


https://huggingface.co/datasets/aps/super_glue
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Task

Human prompt

Penguins in A Table Answer questions about a table of penguins and their attributes.

Geometry Name geometric shapes from their SVG paths.

Epistemic Determine whether one sentence entails the next.

Object Counting Questions that involve enumerating objects of different types and asking the

model to count them.

Temporal Sequences

Answer questions about which times certain events could have occurred.

Causal Judgement

Answer questions about causal attribution.

Subjective Given the text, choose between ’subjective’ and ’objective’.

TREC Tag the text according to the primary topic of the question. Choose from (A)
Abbreviation, (B) Entity, (C) Description and abstract concept, (D) Human
being, (E) Location, (F) Numeric value.

CB Read carefully the following premise and hypothesis, and determine the rela-

tionship between them. Choose from ’contradiction’, *neutral’ and ’entailment’.

Table 6: Human prompt used in the experiments.

removing specific anchors diminishes accuracy in
tasks that inherently rely on discrete symbolic cues,
exposing a trade-off between adaptability and task-
specific precision.

Figure 1 quantifies this trade-off across Geome-
try, Object Counting, Causal Judgment, and TREC
classification. On Geometry, Causal, and TREC,
PF-enhanced CoT outperforms baseline CoT. In
contrast, PF underperforms on Object Counting,
confirming that excessive abstraction can weaken
performance when precise symbolic filtering is
essential. The introduction of Monte Carlo tree
search (MCTS) planning further highlights the
interaction between feedback form and strategic
search. MCTS alone improves outcomes in Geom-
etry and TREC but destabilizes reasoning in Causal
Judgment, sometimes performing worse than base-
line CoT. Crucially, combining PF with MCTS
yields the best results across all tasks. This syn-
ergy arises because PF anchors exploration within
semantically central regions of the feedback space,
mitigating the brittleness of MCTS while enhanc-
ing its exploratory benefits.

Taken together, the motivating example under-
scores a fundamental tension: concrete feedback
provides strong task-specific guidance but risks
overfitting, whereas generalized feedback improves
adaptability but may reduce performance on tasks
requiring specificity. The integration of PF with
MCTS reconciles this tension, providing both ro-
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bust generalization and stable task execution. This
dual role motivates our framework design, in which
PF acts as a stabilizer of strategic planning, ensur-
ing that search trajectories balance general seman-
tic structure with context-sensitive detail.



Section

Description

Purpose

I’'m writing prompts for a language model designed to handle various scenarios in
a general and robust way. This means the model must identify or construct a solid
plan that leads to correct, plan-oriented answers.

Current prompt

Below is my current prompt: {cur_prompt}.

Issues

Despite aiming for a plan-based solution, this prompt fails to address the following
examples correctly: {example_string}.

Analysis

Please examine each incorrect example step by step.

- Concentrate on how the existing plan (or lack thereof) leads to the wrong answer.
- Pay special attention to any deficiencies in how the prompt organizes or outlines
steps, rather than focusing on a single domain, version, or specific detail.

Requirements

Then, produce an integrated feedback that addresses these common plan-related
issues collectively.

Your feedback should highlight any overarching problems in the prompt’s plan,
propose corrections or improvements to that plan, and ensure that your advice
remains sufficiently abstract and broadly applicable—avoid overly specific or
domain-constrained details unless absolutely necessary for clarity.

Masking process

Next, identify exactly {mask_num} segments in your feedback that are too narrow,
overly technical, or domain-specific.

- Replace each identified sentence with a unique [MASK_n] placeholder (e.g.
[MASK_11], [MASK_21, ...).

- For each [MASK_n], propose {candidate_num} alternative candidates that
broaden or generalize the concept, so the final plan remains applicable to a
variety of scenarios.

Key reminders

- The goal is to understand the deeper, shared reasons for the planning failures
and how to create a more robust plan overall.

- The final feedback should be broadly applicable, rather than tailored to a single
domain or overly specific detail.

- The [MASK_n] replacements and candidate phrases should reflect more general-
ized or inclusive expressions.

Output formatting  Be sure that in the final feedback:
1. You only have {mask_num} total [MASK_n] tokens.
2. Each token has a different index (e.g., [MASK_1], [MASK_2], ... up to
[MASK_{mask_num}1).
3. You provide exactly {candidate_num} candidates for each [MASK_n].
Example Feedback without [MASK]: [ Your feedback in a single consolidated paragraph or

set of paragraphs, before inserting any [MASK]].

Feedback with [MASK]: [Your feedback text, but with the identified overly specific
sentences replaced by [MASK_n]].

Then, for each mask token, provide candidates in the
form: <START>{Candidates_[MASK_1]:[candidate_1, e,
candidate_num]}<END>.

Table 7: Template for generating structured error feedback.
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Input

Q: I have a blackberry, a clarinet, a nectarine, a plum, a strawberry, a banana, a flute, an orange, and a
violin. How many fruits do I have?

A: The most common wrong answer is 9.

The mistake occurs when people count all listed objects instead of filtering out the non-fruits.
Items such as "clarinet," "'flute,'" and ''violin'' are not fruits and should not be included in the
total count.

Let’s think step by step.

We first identify the fruits on the list and include their quantity in parentheses:

- blackberry (1)

- nectarine (1)

- plum (1)

- strawberry (1)

- banana (1)

- orange (1)

Now, let’s add the numbers in parentheses:

I1+1+1+1+1+1=6.

The answer is 6.

Q: I have three oranges, a piano, an apple and two clarinet. How many musical instruments
do I have?

Output

We first identify the fruits on the list and include their quantity in parentheses:
- orange (3)

- apple (1)

Now, let’s add the numbers in parentheses:

3+1=4.

The answer is 4.

Table 8: Few-shot CoT prompting with an exemplar. This setting incorporates explicit error identification, as
highlighted in red , allowing the model to recognize common mistakes. The prompt in blue emphasizes logical
reasoning but may lead to overfitting by enforcing rigid exmplar structures.
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Input

Q: I have a blackberry, a clarinet, a nectarine, a plum, a strawberry, a banana, a flute, an orange, and a
violin. How many fruits do I have?

A: The most common wrong answer is 9 , the total number of items in the list.
Errors occur when people fail to differentiate between relevant and irrelevant objects.
It is important to filter out objects that do not belong to the target category.

Let’s think step by step.

We first identify the fruits on the list and include their quantity in parentheses:

- blackberry (1)

- nectarine (1)

- plum (1)

- strawberry (1)

- banana (1)

- orange (1)

Now, let’s add the numbers in parentheses:

I1+1+1+1+1+1=6.

The answer is 6.

Q: I have three oranges, a piano, an apple and two clarinet. How many musical instruments do I have?

Output

We first identify the objects that belong to the target on the list and include their quantity in
parentheses:

- orange (3, not a musical instrument)

- piano (1, musical instrument)

- apple (1, not a musical instrument)

- clarinet (2, musical instruments)

Now, let’s add the number of musical instruments:

1 (piano) + 2 (clarinets) = 3.

The answer is 3.

Table 9: Few-shot CoT prompting with PF (CoT+PF). This setting refines exemplar by introducing a more
generalized approach, highlighted in yellow, which guide the model in differentiating between relevant and
irrelevant objects. The structured feedback promotes better generalization and mitigates overfitting risks.
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Method Prompt

# Tokens

Acc

w/o PF

Carefully interpret and manage tasks involving a dynamic table of
penguins and their attributes. Focus on precisely applying variable
conditions such as age and weight to generate accurate responses. Pay
close attention to updated numeric values and comparison terms like
“more than,” “less than,” and “equals.” Following any modifications to
the table (additions or deletions of entries), reassess the data to ensure
that all criteria are based on the current state of the table. Confirm
each criterion by checking that the penguin’s data complies with all
specifics of the query post-modification. After determining a prelimi-
nary answer, cross-verify with the available answer options to ensure
alignment between your conclusion and the correct multiple-choice
option (A, B, C, D, E). Employ a methodical process to guarantee that
the answers reflect the most recent and accurate information, avoiding
discrepancies and maintaining a high level of precision.

177

0.9873

w/ PF

Answer questions about a table of penguins and their attributes.

12

0.9873

Table 10: Comparison of prompts for the Penguins task with and without Prototypical Feedback (PF).
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Method Optimized Prompt

# Tokens

Acc

w/o PF

Analyze SVG path descriptions to ensure precise geometric shape
recognition. Focus on examining the vertices formed by line segments
(L) and curve segments (C), critically evaluating their connectivity,
closure, and geometric precision. Disregard *'move’ commands (M)
since they do not contribute to the shape’s boundary. The analysis
should incorporate segment continuity, geometric accuracy, and how
each vertex contributes to forming a complete and identifiable shape:
1. **Vertex and Segment Analysis:** - List all vertices, tracing the
connection between each based on the path data. Verify closure by
identifying endpoints that overlap or explicit ’Z’ commands indi-
cating that the path closes. - Analyze each segment (line or curve)
connecting these vertices: measure lengths, calculate angles at each
vertex, and assess whether the segments follow straight, curved, or
composite trajectories. 2. **Geometric Configuration Assessment:**
- Utilize mathematical methods to evaluate the geometric properties
systematically. This includes calculating distances, interior angles,
and identifying symmetrical relationships. Analyze side equality and
angle consistency across vertices to ascertain the potential for regular
or irregular polygons, ellipses, and circles. 3. **Polygon and Curve
Specification: ** - Classify the types of curves involved and determine
their role within the shape—whether they form complete shapes such
as entire circles or contribute segments to polygons. - For polygonal
paths, specify the type by exact segment measurements and angle cal-
culations, such as identifying pentagons, hexagons, or non-standard
polygons, based on side length and angle congruency. 4. **Shape
Identification with Geometric Justification:** - With the evidence
from the rigorous analysis of vertices, angles, and segment lengths,
classify each shape into concrete geometric categories. Where a
shape exhibits properties matching multiple categories, list potential
classifications and use weighted geometric evidence to identify the
most probable category. 5. **Explicit Handling of Geometric Am-
biguities:** - Address ambiguities by detailing specific geometric
inconsistencies or unconventional connections. Offer clear resolu-
tions based on geometric rules and observed anomalies, prioritizing
data-driven analysis over visual estimates. Your responsibility is to
perform a detailed geometric analysis of SVG shapes, ensuring adher-
ence to stringent criteria for shape identification. Record and justify
each classification using thorough understanding and quantifiable data
related to the path’s geometric properties. Engage in this task with
precision, aiming to cover all feasible geometric forms and corre-
sponding justifications based on the analysis.

177

0.7750

w/ PF

Determine the type of geometric shape from the SVG path data by
evaluating the number of vertices, their connecting edges, angles, and
any distinguishing characteristics of the shape’s structure. Compare
these findings directly with each option provided to ascertain the
shape’s identity, ensuring an accurate match between the defined path
and the geometric classification.

62

0.8500

Table 11: Comparison of prompts for the Geometry task with and without Prototypical Feedback (PF).
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Method Optimized Prompt

# Tokens

Acc

w/o PF

Assess the logical relationship between the given premise and hy-
pothesis by examining the layers of beliefs, memories, or suspicions
involved. Determine whether the hypothesis can be considered a
logical consequence of the premise through necessary inferences that
align with typical human reasoning, even if not directly stated. Focus
on whether the implied or indirect truths in the premise support the
conclusion presented in the hypothesis. Choose from the options
’entailment’ or ‘non-entailment’.

89

0.8920

w/ PF

Clarify the logical relationship between the sentences by considering

direct statements and the implications of beliefs or suspicions therein.

Choose from ’entailment’ if the hypothesis necessarily follows from
the premise, or *non-entailment’ if it does not.

50

0.8920

Table 12: Comparison of prompts for the Epistemic task with and without Prototypical Feedback (PF).
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Method Optimized Prompt # Tokens  Acc

w/o PF Prompt for Categorically Enumerating and Counting Items from 476 0.9480
Mixed Groups with Flexibility in Identification: This prompt aims to
guide the identification, enumeration, and counting of mixed items
based on specified categories. It focuses on enhanced flexibility and
comprehensive treatment of all items, recognizing the broad range of
potential relevant entities. Adherence to this prompt will ensure the
inclusion of all pertinent items and enhance the enumeration accuracy:
1. **Initial Listing and Identification of Items**: - Enumerate all
items mentioned in the provided input without initially filtering by
category. This step avoids prematurely excluding relevant entities.
- Example: If the input mentions "three drums," "two flutes," "four
snails," and "six birds," list them all. 2. **Flexible Categorization of
Items**: - Recognize and categorize broadly. For example, if the ques-
tion specifies counting "animals," include mammals, birds, reptiles,
amphibians, insects, and other relevant organisms. - Clearly delineate
each category’s included items, grouped by their broader classifica-
tions. 3. **Calculation of Totals with Multiplicative Handling**: -
Clearly apply any numeric multipliers to the items identified. For
example, "four snails" should be counted as four instances toward the
total. - Document both individual and cumulative counts for clarity: -
Individual: Snails: 4 - Cumulative for animals (if applicable): Total
animals so far including snails, birds, etc. 4. **Confirmation and Ver-
ification of Item Counts**: - Re-inspect the list to ensure all items are
appropriately categorized and all mentioned quantities are accurately
represented and summed. - Verify that each item and quantity matches
what was specified in the input. Correct any discrepancies found dur-
ing this stage. 5. **Final Answer Formulation**: - Summate the
counts of requested categories (e.g., total animals or total musical
instruments) and present a clear and concise final count. - Example
Final Answer: "You have a total of 15 animals," ensuring that the re-
sponse specifies the category and the tally. This streamlined approach
ensures that nothing is overlooked, and everything is counted with
appropriate categorization and precise arithmetic. By focusing on
flexible categorization and comprehensive enumeration, the prompt
inherently reduces errors and enhances the clarity of responses. Use
this prompt to accurately manage and respond to inquiries involving
the enumeration of mixed items based on specified categories.

w/ PF Questions involving the identification, categorization, and enumera- 228 0.9620
tion of diverse objects require a nuanced, context-aware approach that
can effectively handle varying specifics and potential ambiguities of
each task. Begin by precisely distinguishing among different types
of objects or categories, paying special attention to instances where
terms might have dual meanings or objects could fit into multiple cate-
gories. Utilize a flexible counting methodology that starts with a broad
classification, honing in on a detailed count of each item based on its
context-appropriate category. Implement a robust validation process
that actively questions both the counts and the initial categorizations,
particularly focusing on areas where there could be overlapping char-
acteristics or shifts in context that may impact classification. Ensure
that the process is adaptable, continually refining counting strategies
to better handle ambiguities and optimize categorizations. This iter-
ative and responsive validation approach should facilitate real-time
corrections of any miscounts or misclassifications, thereby increasing
the reliability of the output. This adaptive framework is devised to
consistently deliver precise, context-sensitive results by fluidly adjust-
ing to the nuanced demands and challenges of each scenario, ensuring
that every item is accurately accounted for in a way that reflects its
real-world usage and significance.

Table 13: Comparison of prompts for the Object Counting task with and without Prototypical Feedback (PF).
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Method

Optimized Prompt

# Tokens

Acc

w/o PF

Carefully review the timelines and events provided, focusing on iden-
tifying time slots where no overlapping activities occur. Consider all
related operational constraints, such as location hours. Among the
response options provided (A, B, C, D), choose the one that repre-
sents a time slot free from other scheduled events, adhering strictly
to the given conditions. Clearly link your selection process to the
timeline data and constraints you have analyzed. Ensure your re-
sponse is concise, directly mapping your choice to the corresponding
labeled option and fully substantiated by your analysis. This prompt
encourages precise, data-driven decision-making with an emphasis
on directly correlating findings to specific answer options.

126

0.9960

w/ PF

Streamline the event scheduling framework by executing in-depth
assessments of detailed timelines, authenticated eyewitness records,
and precise operational scenarios. Begin the analysis by establishing
a comprehensive visual representation of all scheduled events and
their associated constraints. Progress by systematically resolving
any time overlaps or conflicts using rigorous scrutiny reinforced by
authenticated data integration. Emphasize adaptability, encouraging
periodic adjustments to the schedule in response to evolving data
or alterations in circumstances. Employ a combination of logical
and statistical inference methods to effectively navigate and resolve
ambiguities or deviations. The primary objective is to accurately
define optimal time slots for the events, with a methodology that
fully incorporates all available data while also proactively filling any
data voids and clarifying uncertainties. This refined approach aims to
elevate the accuracy and reliability of the scheduling process, ensuring
it remains adaptable to timely updates and enhancements based on
real-world feedback and new information.

169

0.9860

Table 14: Comparison of prompts for the Temporal task with and without Prototypical Feedback (PF).

21



Method Optimized Prompt # Tokens  Acc

w/o PF  Systematically dissect causal relationships with a nuanced emphasis 481 0.6700
on the interplay between direct actions, systemic contexts, and the
intentions—both explicit and implicit—of various agents within com-
plex scenarios. Employ the following criteria to deepen and refine
your evaluation of causation, aiming for a balanced interpretation of
both individual and collective responsibilities: 1. **Refined Causa-
tion Analysis**: - **Direct, Contributory, and Conditional Effects**:
Identify actions that are directly responsible for outcomes, those that
contribute alongside other factors, and conditions that are either re-
dundant or necessary. Assess these actions and conditions to ascertain
their roles as either independently sufficient or as part of a collective
causation. - **Influence of Systemic Contexts**: Examine whether
specific outcomes could have occurred in the absence of certain pre-
existing systemic conditions, thereby distinguishing the impacts of
direct actions from those influenced by existing frameworks. 2. **In-
tent and Awareness Evaluation**: - **Explicit and Implicit Intent
Recognition**: Examine actions for both the overt intentions as-
sociated with them and the implications of tacit consent to known
outcomes. Consider instances where non-actions (such as maintain-
ing a status quo) result in outcomes, analyzing whether these reflect
deliberate intent or indifference. - **Systemic and Policy-Driven
Intent**: Analyze how organizational policies or cultural norms may
shape, suppress, or reveal the true intentions of individuals or groups,
particularly noting how these policies influence actions and decisions.
3. **Dynamic Interactions and Dependencies**: - **Direct and In-
direct Causal Links**: Explore how various actions intertwine and
contribute collectively to outcomes, especially in scenarios involving
multiple agents. Assess the extent to which individual actions depend
on or reinforce one another, and how these interactions influence the
overall causal chain. - **Recognition of Complex Agent Interac-
tions**: In multiparticipant scenarios, detail the contributions and
intentions of each participant, considering their cooperative or con-
flicting roles in shaping outcomes and their awareness of these roles. 4.
**Ethical and Governance Considerations**: - **Critical Ethical Re-
view**: Delve into the ethical ramifications of decisions and actions
within their broader systemic and operational contexts, evaluating how
these choices align with or deviate from ethical norms and corporate
governance. - **Evaluation of Legal and Normative Frameworks**:
Assess how legal regulations and organizational norms either facilitate
or restrict behaviors and decisions, exploring their role in shaping the
resultant causal dynamics.

w/ PF Examine causal relationships in scenarios with multiple actors and 137 0.6900
actions, emphasizing a holistic understanding of how individual and
collective decisions contribute to outcomes. Instead of merely distin-
guishing primary from secondary causes, delve into analyzing how
actions interplay and depend on each other to shape the final result.
Explore the network of direct and indirect influences, acknowledging
that outcomes are often the product of several intertwined conditions
and decisions. Flexibly attribute causality, considering both individual
actions and the synergistic effects arising from multiple factors. Con-
clude your analysis by discussing which combinations of actions were
critical in leading to the outcome, and identify any key individual
contributions that significantly altered the course of events, giving a
balanced view of all interfacing elements.

Table 15: Comparison of prompts for the Causal Judgement task with and without Prototypical Feedback (PF).
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Method Optimized Prompt

# Tokens

Acc

w/o PF

Given a paragraph of text, determine if it falls under ’subjective’ or
“objective’ classification. It’s important to understand that ’Subjective’
text typically expresses personal opinions, feelings, or beliefs, char-
acterized by emotional or judgmental language. *Objective’ text, on
the other hand, presents factual information or describes events and
scenarios neutrally without personal bias or emotional coloring. Note:
1. Subjective text can include personal interpretations or emotional
responses, using words that evaluate or reflect personal perspective
(e.g., "wonderful”, "horrible", "I feel", "I believe"). 2. Objective
text can include factual descriptions or general observations stated
without personal involvement, even if the text uses descriptive or vivid
language (e.g., "the car is red", "the meeting starts at 9 AM", "he wore
a blue shirt"). Assess the usage of language in the text, considering
the context and the narrative mode (first-person may hint at subjec-
tivity, while third-person does not automatically imply objectivity).
Sometimes, descriptive elements in third-person narratives are purely
informative and should be classified as objective. Now, analyze the
following text and classify it as either: - Objective or - Subjective
Text: Is the above text subjective or objective? Select the correct
option from: - Objective - Subjective

265

0.7390

w/ PF

Analyze the text provided to ascertain its primary mode of communi-
cation. Focus on whether the text is primarily descriptive of events,
situations, or behaviors without incorporating personal feelings, as-
sumptions, or speculative elements, thereby classifying it as objective.
Alternatively, assess if the text predominates in expressing feelings,
personal interpretations, or subjective opinions, thereby categorizing
it as subjective. Utilize distinct markers such as the use of emotive lan-
guage, the presence of speculative phrases, and the explicit mention of
personal opinions. Importantly, differentiate between straightforward
descriptions which may include character actions or stated facts in
a narrative form and interpretative language that reflects personal
insights or an emotional undertone. State your conclusion clearly as
either ’objective’ or ’subjective’ based on your analysis.

149

0.8000

Table 16: Comparison of prompts for the Subj task with and without Prototypical Feedback (PF).
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Method Optimized Prompt # Tokens  Acc

w/o PF  For each question presented, you are tasked with identifying the core 490 0.8540
theme by precisely analyzing the keywords and directives provided in
the language of the question. Consider both nouns and action verbs
that elucidate either explicit requests like listing, defining, pinpointing
locations, identifying entities, exploring human-related information,
or seeking numerical data. Distinctly select the category that most
closely aligns with the main inquiry of the question based on these
cues. The refined emphasis on understanding the specific language
cues aims to guide you more accurately in distinguishing between
similar categories and avoiding misinterpretations. The categories
for classification are as follows: - (A) Abbreviation: Opt for this
category when the question explicitly asks for an acronym, initialism,
or the abbreviated form of a term. - (B) Entity: Choose this when the
primary focus is on identifying specific objects, substances, or cate-
gories of items explicitly named (including languages but excluding
organizations). - (C) Description and Abstract Concept: This should
be selected when the request revolves around extensive explanations,
narratives, or theoretical discussions about a topic. - (D) Organiza-
tion or Human: Relevant if the question is centered on companies,
notable individuals, or organizations, directly discussing their actions,
contributions, or creation-related queries. - (E) Location: Use this
for questions that are explicitly inquiring about specific places, ge-
ographical points, or well-defined areas. - (F) Numeric Value: This
applies if the question expressly asks for exact numbers, measurable
data, specific dates, or other quantifiable information. When classify-
ing, prioritize direct language cues that instruct specific actions such
as "Define", "Name", "Describe", or "Quantify". Moreover, ensure
clarity in differentiating between "Entity” and "Location’ by focusing
mainly on what the question is specifically asking about—whether
it is a thing (B) or a place (E). Example Questions for Guidance: -
"Define what PTSD stands for." - (A) Abbreviation - "List all elements
found in the air." - (B) Entity - "Explain the theory behind quantum
computing." - (C) Description and Abstract Concept - "Who founded
Microsoft?" - (D) Organization or Human - "What city is the Louvre
Museum located in?" - (E) Location - "What is the population of
Tokyo?" - (F) Numeric Value Let these examples serve as your refer-
ence to meticulously categorize each question using the lead provided
by keywords and immediate contexts.

w/ PF Please critically assess the main intent of each query by selecting the 447 0.8600
most fitting category from the list provided. Each category is compre-
hensively designed to capture a wide range of inquiries, emphasizing
the need to focus on the query’s principal intent or underlying reason
over mere textual elements. Be aware that while some inquiries might
encompass elements from multiple categories, proper discernment
should guide you to the category that best encapsulates the query’s
overarching focus. Categories: (A) Abbreviation - Use this for queries
where the main goal is to understand or decode abbreviations, initials,
or acronyms. (B) Entity - Appropriate for questions that concentrate
on specific tangible or intangible entities such as objects, organiza-
tions, ideas, or large concepts. (C) Description and Abstract Concept
- Opt for this category when the inquiry demands an in-depth expla-
nation or extended discourse on abstract ideas, theories, or complex
concepts. (D) Human Individual - Select this for queries specifically
about persons or roles defined by professional or social status, with
a particular emphasis on individual attributes or notable actions. (E)
Location - Best suited for queries primarily about the specifics, char-
acteristics, or descriptions of geographical locations or important
structures. (F) Numeric Value - Choose this when the query explicitly
seeks numerical information, such as dates, measurements, and statis-
tical data. Through nuanced understanding and careful analysis of the
query’s context and key aims, ensure that your categorization reflects
the most substantial aspect of the inquiry. This precision will provide
clarity and enhance the effectiveness of query processing. Example
Query: "How are historical eras determined and categorized?" While
this question could involve numeric data about historical timelines (F),
the deeper intent is to understand the underlying principles or theories
related to classifying periods in history, placing it firmly in category
(C) Description and Abstract Concept. Now, assess the following
query with the revised guidelines in mind: Text: "Who is considered
the pioneer of modern computing and what were their key contribu-
tions?" Options: (A) Abbreviation (B) Entity (C) Description and
Abstract Concept (D) Human Individual (E) Location (F) Numeric
Value The guiding principle for selecting categories should always
prioritize the core subject or intention of the query over surface-level
keywords or secondary themes.

Table 17: Comparison of prompts for the TREC task with and without Prototypical Feedback (PF).
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Method Optimized Prompt # Tokens  Acc

w/o PF Read carefully the following premise and hypothesis, and determine 31 0.8214
the relationship between them. Choose from ’contradiction’, *neutral’
and ’entailment’.

w/ PF Read carefully the following premise and hypothesis, and determine 31 0.8214
the relationship between them. Choose from ’contradiction’, *neutral’
and ’entailment’.

Table 18: Comparison of prompts for the CB task with and without Prototypical Feedback (PF).
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