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Abstract. Graph neural networks often struggle to balance global de-
pendency modeling and preservation of local structural detail. Message-
passing models emphasize local neighborhoods but fail to capture long-
range interactions, whereas transformer-based graph architectures intro-
duce global attention at the cost of fine-grained distinctions. Inspired by
reaction—diffusion dynamics, where diffusion enforces global coherence
and reaction amplifies local variation, this paper proposes a global-local
graph fusion network that models representation learning as a grad-
ual transition from a globally smooth initialization to locally refined
patterns. The proposed method implements this transition through a
reaction—diffusion ordinary differential equation on graphs and extracts
paired global and local embeddings, which are adaptively fused by an
attention-based module. Experiments on six graph classification datasets,
two long-range graph benchmarks, and four node classification datasets
show that it consistently outperforms strong MPNN and transformer
baselines, with gains up to 11.01%. Ablation and analysis studies indicate
that both the global-local decomposition and the fusion mechanism are
critical to improvements in graph mining performance.

Keywords: Graph Neural Network - Representation Learning - Graph
Mining - Neural Ordinary Differential Equations.

1 Introduction

Graph-structured data are ubiquitous in diverse domains such as social networks,
molecular analysis, and recommender systems [24/34], making expressive and
scalable graph mining methods essential. Graph neural networks (GNNs) have
become a dominant framework for learning from such data by propagating infor-
mation along edges. Message passing neural networks (MPNNs) achieve strong
performance through recursive neighborhood aggregation [20J2], but their inher-
ently local nature limits generalization across graphs with varying connectivity
patterns [I3]. Transformer-based GNNs mitigate this limitation by using global
attention mechanisms that enable direct interactions among distant nodes [37125],
but they often blur fine-grained local structural distinctions [I0J9]. This tension
between global context and local expressiveness remains a central design challenge
in graph representation learning.

We draw inspiration from the Turing reaction—diffusion mechanism [I7126] to
view this challenge as an interaction between diffusion and reaction processes
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on graphs. In biological systems, diffusion enforces spatial uniformity by spread-
ing concentration gradients, while reaction amplifies local differences to form
structured patterns. Similarly, graph diffusion promotes global smoothness by
aligning the node embeddings with the low-frequency topology [41], while graph
reaction encourages discriminative variations that emphasize local differences
between adjacent nodes. The interplay between these two processes produces
representations that combine global coherence with locally diverse patterns.

Based on this principle, this paper proposes a global-local graph fusion
network (GLGFN) that models graph representation learning as a continuous
transition from global diffusion to local reaction. The model is instantiated as a
reaction—diffusion neural ordinary differential equation (ODE) on graphs, where
the initial state ¢ = 0 encodes globally diffused information and the terminal state
t = T encodes locally refined patterns. These two states are explicitly extracted
as paired global and local embeddings.

To integrate these complementary embeddings, GLGFN employs an attention-
based fusion mechanism that adaptively balances global smoothness and local
expressiveness according to the downstream task and graph structure. We will
show the effectiveness of the proposed method with extensive experiments on
six graph classification datasets, two long-range graph benchmarks, and four
node classification datasets. In addition, additional ablations and analyses will
highlight the importance of both the reaction—diffusion decomposition and the
adaptive fusion module for graph mining tasks.

2 Related Works

2.1 Message Passing GNNs

Graph neural networks based on message passing update node representations by
aggregating features from local neighborhoods. GCN [16] applies spectral filtering
to linearly combine neighboring features, while GraphSAGE [I4] introduces
learnable aggregation functions to support inductive inference. GAT [33] employs
attention over neighbors to assign different importances, and GatedGCN [5]
incorporates edge gating to modulate information flow. Although these models
effectively capture local structures, their reliance on shallow neighborhoods makes
it difficult to encode long-range dependencies and global graph properties.

To enrich global information, several methods introduce hierarchical pooling or
global objectives. DiffPool [40] learns soft cluster assignments with differentiable
pooling, constructing hierarchical graph representations that capture coarse-
grained structure. InfoGraph [31] maximizes mutual information between node
and graph embeddings in a contrastive framework to learn informative graph-level
representations. These methods extend the receptive field beyond immediate
neighborhoods, but they do not explicitly disentangle global and local inductive
biases.
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2.2 Transformer-based GNNs

To overcome the locality of message passing, recent work adapts Transformer ar-
chitectures to graphs by combining structural encodings with global self-attention.
GraphTrans [37] augments standard GNN layers with a permutation-invariant
Transformer that models long-range dependencies on top of locally aggregated
features. SAN [I9] uses Laplacian eigenvectors as learnable positional encodings to
inject spectral structure into a fully connected Transformer, and Graphormer [39]
integrates centrality, shortest-path, and edge encodings directly into attention
computations to improve structural awareness.

More recent models further refine the treatment of global and local signals.
GraphGPS [27] combines a message passing backbone with a global attention
module and organizes structural encodings into local, global, and relative compo-
nents. GOAT [I8] introduces a dual-attention mechanism with scalable global
attention and sampled local attention to handle large and heterophilous graphs.
Polynormer [10] models node interactions via polynomial filters controlled by
attention and implements separate local and global equivariant attention modules
fused by a local-to-global attention scheme. Although these Transformer-based
GNNs improve global dependency modeling, they typically treat global and local
processing within a single attention stack rather than explicitly modeling and
fusing distinct global and local representation stages, which is the focus of this
work.

3 Proposed Method

We propose a two-phase architecture in which a diffusion process first encodes
a global bias and a subsequent reaction process refines representations based
on local contrasts (§3.1). The resulting global and local embeddings are then
fused by an attention module (§3.2). This design enforces a functional separation
between global and local inductive biases while allowing the model to adaptively

weight their contributions per instance.

3.1 Continuous Global-to-Local Modeling

We adopt a continuous-depth framework based on graph neural ordinary differ-
ential equation (ODE). Given initial node features X, an encoder e produces

h(0) = e(X;0,) € RIVIxdn,

and the representation evolves according to

T
L — fh(t),1:0),  h(T) = h(0) + / F(h(t), :0) dt. (1)

This formulation allows gradual transitions in representation space and supports
time-dependent dynamics that encode both global and local priors.
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Fig. 1. Illustration of the overall architecture.

We instantiate f as reaction—diffusion dynamics [§]. Given h(0) = €(X;60.),
the evolution is defined as

dh(t ~ o
% = —aLh(t) + B(A — A?)h(t), (2)
where L is the normalized Laplacian, Ae [0, 1}|V‘X|V‘ is a soft adjacency, and
a, 8 € R are learnable diffusion and reaction coefficients.

To explicitly encode a globally smoothed initialization, we regularize h(0) to
the diffusion-only solution. We introduce the global encoding loss

1
‘CGE = m;

Minimizing L g encourages h(0) to approximate a globally smoothed equilibrium
of the diffusion term.
Under this regularization, the terminal state can be approximated as

2

hi(0) — /O " ihi(t) di 3)

T
h(T) ~ /0 B(A — A2)h(t) dt, (@)

so that the reaction term dominates the residual evolution after global diffusion.

The operator (121 — f~12) cancels transitive similarity and amplifies contrasts
between nodes that are directly connected but poorly supported by common two-
hop neighbors, which induces high-frequency (local) signals in h(T). Intuitively,
the diffusion term —Lh(t) acts as a low-pass filter that aligns the embeddings
with the low-frequency topology, while the reaction term (/1 - Az)h(t) highlights
the boundary regions and local deviations. As a result, h(0) encodes a globally
coherent structure and h(7T) encodes locally discriminative patterns, producing a
global-local pair from a single ODE trajectory.
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We discretize the ODE with the Euler method [II7]:
h(tier) = h(ty) +7 - f(R(tx), te), ()

with step size 7. The embeddings at ¢t = 0 and ¢ = T are extracted and used as
global and local representations, respectively.

3.2 Adaptive Fusion of Global and Local Representations

We now define an adaptive fusion mechanism for the global embedding h(0) and
the local embedding h(T"). The relative importance of global and local information
is expected to vary across nodes and graphs depending on the downstream task.
Adaptive fusion of both sources is therefore essential for constructing expressive
and task-relevant embeddings.

At the node level, we compute attention scores that compare each embedding
with a learnable task vector w, € R:

s9(i) = cos(hi(0),ws),  sui) = cos(hi(T),wy),

a; = softmax([sq(i), si(7)]), h;= Pool(al(g)hi(()) + aEl)hi(T)),
where al(-g) and al(-l) are the global and local components of the 2D vector a;, and
Pool(+) is a permutation-invariant aggregation over feature channels if needed.

At the graph level, we define an analogous fusion using pooled global and
local embeddings:

54 = cos(Pool(h(0)),wy), & = cos(Pool(h(T)),ws),
a = softmax([3y,5]), h = a9 Pool(h(0)) + aPool(h(T)),

(6)

(7)

where wy, € R? is a learnable graph-level query vector.
The final representation is obtained by concatenating the aggregated node-
level and graph-level features:

H e R? = [Zh’ h]. (8)

This mechanism allows the model to modulate the contribution of global and
local components based on their alignment with learned task-specific queries at
both node and graph levels.

3.3 Training

The representation H is passed through fully connected layers to produce predic-
tions § = FC(H). The total loss is

Ltotal = )\clsﬁcls + /\GEEGEa (9)

where L = — chzl y; log(y;) is the cross-entropy loss for the C classes and
Aas and Agg are the weighting coeflicients (we set Aqs = 10 in all experiments).
Gradients through the ODE solver are computed using the adjoint method [7],
which enables end-to-end training with controlled memory cost.



6 Anonymous submission

Table 1. Dataset specification.

Dataset 7# |G||Avg. |V||Avg. |£||# features|Avg. diameter| Prediction | Metric
PTC_MR 344 14.29 14.69 18 7.52 2-graph-class | Accuracy
D&D 1,178 | 284.32 | 715.66 82 19.90 2-graph-class | Accuracy
PROTEINS 1,113 | 39.06 72.82 3 11.57 2-graph-class | Accuracy
IMDB-B 1,000 | 19.77 96.53 N/A 1.86 2-graph-class | Accuracy
IMDB-M 1,500 | 13.00 65.94 N/A 1.47 3-graph-class | Accuracy
REDDIT-B 2,000 | 429.63 | 497.75 N/A 3.02 2-graph-class | Accuracy
Peptides-struct|15,535| 150.9 308.9 9 56.97 11-graph-task| AP

Peptides-func {15,535/ 150.9 307.3 9 56.97 10-graph-task| MAE

Cora 1 2,708 5,278 1,433 19 7-node-class |Accuracy
CiteSeer 1 3,327 4,522 3,703 28 6-node-class |Accuracy
PubMed 1 19,717 | 44,324 500 18 3-node-class |Accuracy
Chameleon 1 890 8,854 2,325 23 5-node-class |Accuracy

4 Experiment

4.1 Setup

Datasets. We evaluate on six graph classification benchmarks: one molecular
dataset (PTC_MR [32]), two bioinformatics datasets (D&D [1I], PROTEINS [4]),
and three social network datasets (IMDB-B, IMDB-M, REDDIT-B [38]). For
long-range dependency evaluation, we use Peptides-func and Peptides-struct from
the LRGB benchmark [I2]. For node classification, we use three homophilous
citation networks (Cora [23], CiteSeer [3], PubMed [29]) and the heterophilous
Chameleon dataset [28].

Implementation details. We use Adam optimizer with an initial learning rate
of 0.001, reduced by 1% every 20 epochs, weight decay 1075, and two encoding lay-
ers in all experiments. For graph classification, we adopt 10-fold cross-validation
and report mean accuracy. For LRGB, we use the official train/validation/test
splits [27] and report the mean and standard deviation in four random seeds.
For node classification, we follow the protocol in [22] with 60,/20/20 splits (train-
ing/validation/test), except for Chameleon where predefined splits are used, and
report the mean and standard deviation over 10 seeds.

Comparison baselines. We compare the proposed method with MPNN-based
GNNs and Transformer-based graph models. MPNN baselines include GCN [I6],
GraphSAGE [I4], GAT [33], GatedGCN [5], DiffPool [40], GINE [I5], and In-
foGraph [3I]. Transformer-based baselines include GraphTrans [37], SAN [19],
Graphormer [39], GraphGPS [27], NAGphormer [6], NodeFormer [35], Exphormer [30],
GOAT [18], SGFormer [36], Polynormer [10], and Gradformer [21]. Baseline results
are taken from [2127127].
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Table 2. Comparative performance on graph classification datasets. The mean + s.d. of
10 cross-validation folds are reported. The top is in bold and the second is underlined.

Model PTC MR| D&D |PROTEINS|/IMDB-B/IMDB-M REDDIT-B
GCN 62.3+5.7 | 79.14£3.1| 75.94+2.8 73.3£5.3 | 51.2+5.1 89.34+3.3
GraphSAGE - 65.8£4.9 | 65.94£2.7 | 72.4£3.6 | 49.9£5.0 84.3+1.9
GAT - - 74.7+2.2 75.84+2.3 | 47.84+3.1 -
DiffPool 63.4+1.0 |76.9£4.4| 75.2+4.0 70.1£6.3 | 47.2+1.8 89.1+1.6
InfoGraph 61.7+1.4 |72.9£1.8| 74.440.3 73.04+0.9 | 36.7+0.8 82.5+1.4
GraphTrans - 75.244.8| 73.9+3.8 73.14+2.1 - 88.6+1.3
SAN - - 74.143.1 72.1+2.3 - -
Graphormer | 71.445.2 - 76.3£2.7 70.3£0.9 | 48.94+2.0 -
GraphGPS - 76.0+1.5| 75.8+£2.3 77.4£0.6 - 88.44+1.2
NAGphormer| 66.5+5.6 - 74.6+3.0 74.7+4.1 | 51.7+£3.5 -
SGFormer 65.24+4.2 - 74.6+3.0 74.7+4.1 | 56.4+£3.4 -
Gradformer - - 77.5£1.9 77.1£0.5 - -
Ours 74.7+8.3 |83.4+2.6| 80.04+3.7 |78.2+4.3| 54.842.6 90.8+2.0

4.2 Model Performance

Graph classification results. Table[2]shows that the proposed method achieves
the best performance in all six graph classification datasets, surpassing both
the MPNN-based and Transformer-based baselines. The gains are especially
pronounced on large graphs such as D&D (83.4%, +3.3% over the second best)
and REDDIT-B (90.8%, +1.5%), indicating that global-local modeling is effective
for complex graph structure.

Node classification results. Table [3| shows that the proposed method obtains
the best accuracy in all four node classification datasets. The improvement
is particularly large in Chameleon (57.29%, +11.01% over GCN), suggesting
that explicit global-local decomposition is beneficial in both homophilous and
heterophilous settings.

Long-range benchmark results. In the LRGB benchmark (Table , the
proposed method achieves the lowest MAE in Peptides-struct and competitive
AP in Peptides-func, close to GraphGPS. These results indicate that the method
handles long-range dependencies effectively while preserving local structural
information.

4.3 Model Analysis

Ablation studies. Table [5| shows that each component contributes to the
final performance. Removing Lag or A(T) degrades accuracy, which confirms
the benefit of explicitly separating diffusion and reaction. Disabling node- or
graph-level fusion also reduces performance, indicating that adaptive weighting
at both levels is important.
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Table 4. Performance on long-
range graph benchmark. The mean
+ s.d. of 4 runs with different ran-

Table 3. Performance on node classification
datasets. The mean + s.d. of 10 splits are reported.

Model Cora CiteSeer | PubMed [Chameleon| dom seeds are reported.

GCN 85.10£0.67 | 73.14=1.54 | 8L.12:£0.52 | 46.28£3.40

GraphSAGE | 83.88+0.65 | 72.26:£0.55 | 79.72+0.50 | 44.81+4.74 ] ]

GAT 84.46:£0.55 | 72.2240.84 | 80.28£0.52 | 44.13+4.17 | |Model Peptﬁfﬁtr““ Pept‘:;?‘f‘mc

=44 v

GraphGPS | 83.87%0.96| 72.7341.28 [ 79.94£043 [ A15543.91 | (= R e BT e A g

NAGphormer| 80.92+1.17 | 70.59-£0.89 | 80.14+1.06 - GINE oo 00t | 0ot to00m0

NodeFormer | 82.73%0.75 | 72.3741.27| 79.50:0.92| 36.38%3.85 | |t ol 05490 10.0013. | 0.586410.0077

Ours 86.7251.11|75.57+1.41[88.9920.43 57-2951.72 | | GraphGPS| 0.250040.0005 |0.6535-0.0041
Ours 0.2498£0.0020 | 0.6312-:0.0056

Table 5. Ablation study. # refers to the rank based on test accuracy.

h(0) [Lce|h(T)| Adaptive Fusion |[PROTEINS| IMDB-B | IMDB-M | Chameleon
Global Local| Node Graph Acc. T # | Acc. T #| Acc.t #| Acc. T #
v 79.1+£3.9 6 |77.4+4.4 4|53.9£4.0 5| 53.18£2.15 7
v v 79.1£4.7 6 |76.3£4.4 8|53.9£4.2 5| 53.82£2.70 6
v v 78.743.5 8 | 76.8+4.8 7|53.7£3.5 7| 55.00£1.12 8
v V|V 79.3+£5.0 4 | 77.0+£3.8 6|54.3£4.4 2| 55.07£2.28 5
v v v v 79.3+4.7 4 |77.2+4.4 2|54.1£4.0 4| 55.88£1.46 2
v v v v 79.7£4.7 2 |77.4£3.8 4|53.5+4.2 8| 55.46+£3.10 4
v v v v 79.4+3.7 3 | 77.74£3.6 3|54.3£3.5 2| 55.57+2.34 3
v v v v v 80.0+3.7 1 |78.2+4.3 1|54.843.6 1|57.294+1.72 1

Global-local analysis. To quantify local structural information, we compute a
one-hop local similarity score. Given a graph G = (V, £) with node embeddings
h € RIVIXdn  the local similarity of a node v € V is defined as

Z cos(hy, hy),

ueN (v)

1

= —— (10)
NV (v)]

where N (v) denotes the one-hop neighbors of v. The corresponding graph-level

statistic is the average over nodes with at least one neighbor:

1

v -

Z sim(v), V' ={veV||N(@)| >0}

veY’

Figure [2| shows that h(T") consistently exhibits higher one-hop similarity
than h(0), which is consistent with its interpretation as a cluster-aware, locally
smoothed representation. The t-SNE plots in Figure [3| indicate that h(0) and
h(T) occupy complementary regions in the embedding space, supporting the
global-local disentanglement.

Quantitative analysis of adaptive fusion weights. In Figure [5] we analyze
the learned node- and graph-level weights a; and a from Egs. @ and (|7)).
The model places more graph-level weight on global features in datasets such
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Fig. 2. Average one-hop node similarity for Fig. 3. t-SNE visualization of node embed-
h(0) and h(T') on the test sets. Mean and dings from h(0) (pink) and h(T) ( )
standard deviation are reported over 10

folds.

as PTC_MR and REDDIT-B, while local features dominate in others. This
behavior is consistent with the task-dependent fusion assumption in Section [3.2]
and shows that the fusion module adapts to structural characteristics specific to
the dataset.

(c). IMDB-B (d). IMDB-M

Fig. 4. Sensitivity with respect to T € [1, 8] and step size 7 € [0.1, 1]. Left: test accuracy.
Right: training time per epoch.

Sensitivity analysis. Figure [f] shows that the training time increases monoton-
ically with larger depth of ODE T and smaller step size 7, as expected from the
increase in the number of function evaluations. In contrast, the accuracy of the
test remains relatively stable over a broad range of (7', 7); for example, the accu-
racy variation in PTC MR stays within about 3 percentage points. This indicates
that the proposed method is robust to the choices of ODE hyperparameters.
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Fig. 5. Global and local contributions over training epochs. The shaded area indicates
the range across test samples and the line indicates the mean.

5 Concluding Remarks

We propose a reaction—diffusion-based graph neural network that decomposes
representation learning into a diffusion-driven global stage and a reaction-driven
local stage, followed by adaptive fusion. The proposed method produces paired
global and local embeddings from a single ODE trajectory and learns to weight
them according to the task and graph structure. Experiments on graph classifi-
cation, long-range benchmarks, and node classification, including homophilous
and heterophilous graphs, show consistent improvements over strong MPNN and
Transformer baselines. Ablation, similarity, fusion-weight, and sensitivity analyses
support the interpretation of the proposed method as a robust and controllable
global-local modeling framework, although the decomposition into global and
local components remains coarse and is currently characterized only by attention
weights and similarity statistics. The present analysis does not identify specific
substructures or node roles that drive performance, such as functional groups
in molecular graphs or motifs in social networks, and extending the proposed
method with finer-grained attribution or probing tools to uncover these structural
factors is an important direction for future work.
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